The Color Evolution of the Optical Afterglow of GRB 030329 and the Implications for the Underlying Supernova SN 2003Dh

Total Page:16

File Type:pdf, Size:1020Kb

The Color Evolution of the Optical Afterglow of GRB 030329 and the Implications for the Underlying Supernova SN 2003Dh A&A 427, 901–905 (2004) Astronomy DOI: 10.1051/0004-6361:20041548 & c ESO 2004 Astrophysics The color evolution of the optical afterglow of GRB 030329 and the implications for the underlying supernova SN 2003dh V. Š im on 1,R.Hudec1, and G. Pizzichini2 1 Astronomical Institute, Academy of Sciences of the Czech Republic, 251 65 Ondrejov,ˇ Czech Republic e-mail: [email protected] 2 IASF/CNR, Sezione di Bologna, via Gobetti 101, 40129 Bologna, Italy Received 4 February 2004 / Accepted 30 June 2004 Abstract. We find that the color indices (B − V)0,(V − R)0,(R − I)0,(I − J)0 in the observer frame of the optical afterglow (OA) of GRB 030329 during t − T0 < 10 days are consistent with those of a uniform group of 25 OAs of GRBs, previously analyzed by Šimon et al. (2001; 2003a). The synchrotron component with parameters similar to those of the other 25 OAs was thus initially dominant in the optical and IR spectrum of the OA of GRB 030329. Following the arguments of Šimon et al. (2001), it also appears that either GRB 030329 was not located deep inside a star-forming region or that the local dust was destroyed by ≈− . − = . the intense initial flash. The absolute R magnitude of this event MR0 26 6 mag in the rest frame at (t T0)rest 0 25 days is in good agreement with the typical brightness of the OAs analyzed by Šimon et al. (2001). We detected large color variations of the OA of GRB 030329 only for t − T0 > 12 days, which suggest a rapid evolution of the spectrum of the underlying SN 2003dh. We compare it with the individual type Ic SNe and find that its color evolution is plausibly matched only by that of SN 1998bw although the indices still reveal spectral differences between the two objects. The agreement is particularly good only at t − T0 = 26 and 27 days. The evolution of SN 2003dh becomes faster than that of SN 1998bw later on and SN 2003dh develops an excess light in the red/IR spectral region. We also emphasize the discordance with other type Ic SNe which are not associated with GRBs. Key words. gamma rays: bursts – radiation mechanisms: non-thermal – ISM: jets and outflows – galaxies: ISM – stars: supernovae: general – stars: supernovae: individual: SN 2003dh 1. Introduction very late phases. The light curve of the OA declined with an initial mean decay rate with α = −1.115 (Uemura et al. 2003). Color indices have been and still are widely used in the study The features of the type Ic SN 2003dh appeared in the spec- of many phenomena in astrophysics. Even quite recently the trum after about a week and strengthened later on (Stanek et al. use of broad-band colors has been advocated for identification 2003; Hjorth et al. 2003; Matheson et al. 2003; Lipkin et al. / of young type Ib c SN (Gal-Yam et al. 2004). For the study of 2004). The spectrum displayed large similarities to another optical afterglows (OAs) of GRBs this powerful method is only type Ic SN 1998bw, associated with GRB 980425 (Galama very rarely applied, therefore in this field it is still quite innova- et al. 1998). tive. Color indices enable us to resolve small variations of the In this letter, we apply the method of color indices to the profile of the spectra of the OAs from the measurements in the OA of GRB 030329 and show that it enables the separation of commonly used UBVRIJ filters. This method proved to be very the contributions of the individual emission mechanism, and useful for the analysis of the common properties of the OAs the tracing of the evolution of SN 2003dh in later phases of (Šimon et al. 2001 and 2003a). It also allows us to constrain the event. We also show that this event has characteristics quite the properties of the local interstellar medium of GRBs inside similar to the ensemble of OAs analyzed by Šimon et al. (2001 their host galaxies. and 2003a). A preliminary version of this analysis was pre- The long, intense gamma-ray burst GRB 030329 with the sented by Šimon et al. (2003b). duration of 50 s was discovered by HETE-II on March 29, 2003 (Vanderspek et al. 2003). An exceptionally bright OA 2. Sources of the data and data analysis (∼13 mag(R)) was discovered at t − T0 ≈ 1.25 h (Peterson & Price 2003; Price et al. 2003), which enabled investigators The bulk of the data used for this analysis comes from the to promptly determine the redshift z = 0.168 (Greiner et al. papers by Lipkin et al. (2004) and Matheson et al. (2003). 2003a; Hjorth et al. 2003) and to follow the light evolution to These observations were supplemented by the data provided by Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20041548 902 V. Šimon et al.: Color evolution of the OA of GRB 030329 the case of a centroid or a bin. The resulting standard devia- tions of the indices lie within 0.02–0.14 mag and are displayed in the figures. The Galactic reddening toward GRB 030329 is only EB−V = 0.02 mag according to Schlegel et al. (1998), and smaller than the standard deviations of the indices, it therefore could be neglected for our purposes. Also any light contribution of the host galaxy was quite small (upper limit R ≈ 23.1mag) (Blake & Bloom 2003) and could be neglected. Indeed, there is no flattening in the late phase of the resulting light curves (Fig. 1) which could be attributed to the contribution of the host galaxy. The color indices throughout this paper are in the ob- server frame to allow a comparison with the papers by Šimon et al. (2001 and 2003a). The time evolution of the color indices during the whole event is displayed in Fig. 2. For comparison, also the mean colors with the standard deviation of the ensemble of 25 OAs Fig. 1. The light curves of the OA of GRB 030329 in the individual (t − T0 < 10 days) (Šimon et al. 2003a), are shown. They were passbands. The whole R band light curve is displayed to show the time recalculated, here without including the OA of GRB 030329, evolution of the brightness while for other filters only those (usually but this hardly altered them. The OAs of the following GRBs averaged) points which were used for the calculation of the color in- were used: 970228, 970508, 971214, 980519, 980613, 980703, dices are plotted. Error bars are included but they are usually smaller 990123, 990308, 990510, 990712, 991208, 991216, 000301C, than the symbols used. In densely covered intervals the points are con- 000911, 000926, 010222, 010921, 011121, 011211, 020405, nected by lines for convenience. (This figure is available in color in 020813, 021004, 021211, 030226, 030418. We note that the electronic form.) analyses by Šimon et al. (2001 and 2003a) were restricted to t − T0 < 10 days due to practical reasons, since for most OAs Lamb et al. (2003), Zharikov et al. (2003a,b), Ibrahimov et al. the data for later epochs are sparse, with large uncertainties (2003a,b), Bikmaev et al. (2003), Gorosabel et al. (2003). and mostly only in the R filter. The detail of the dramatic color The light curves with the dense coverage (BVRI)were changes during the late phase of the OA of GRB 030329 can be binned into the segments of 0.015 days in the early phase of the seen in Fig. 3. The rapid large reddening occurs first in B − V, OA (t − T0 < 0.6 days) while the bins of 0.025 days were used then V − R, and finally in R − I. The well defined profiles of for 0.6 days < t − T0 < 0.95 days. The very densely covered the time evolution of the indices also imply that the paths in the R band light curve served as an indicator of the rapid changes color-color diagrams (Figs. 4 and 5) are real. on the time scale of hours in the early phase of the OA. This We generated synthetic color indices of SN 1998bw using enabled us to choose the intervals free of rapid changes; a reli- the code at http://wise-obs.tau.ac.il/∼dovip/typing able interpolation between the neighbouring measurements in (Poznanski et al. 2002), with both the wavelengths of the pass- the segments or filters where the coverage was sparser (within bands and t − T0 scaled to z = 0.168, with T0 referring less than an hour in the first few days after the GRB, and within to the time of GRB 980425. The maximum of brightness of a night in the late phases) was thus possible. For later times, a SN 1998bw occurred at t − T0 ≈ 18 days for z = 0.168. The centroid was often calculated from a group of closely spaced indices of SN 1998bw inside a similar interval of t − T0 as that data (less than 1.5–2 h apart for 1.6 days < t−T0 < 13 days; less covered for the OA of GRB 030329 are included in Figs. 2, 4 than one day apart for t − T0 > 21 days) in a given filter – this and 5. We also generated the colors of type Ic SN 2002ap and enabled us to achieve a higher accuracy of the brightness. The the group of type Ic SNe in the same way, and their time evo- reliability of the measurements from the GCN Circulars was lution is shown in Fig.
Recommended publications
  • Evidence for Supernova Light in All Gamma-Ray Burst Afterglow A
    Clemson University TigerPrints Publications Physics and Astronomy Winter 12-13-2004 Evidence for Supernova Light in all Gamma-Ray Burst Afterglow A. Zeh Thüringer Landessternwarte Tautenburg S. Klose Thüringer Landessternwarte Tautenburg Dieter H. Hartmann Department of Physics and Astronomy, Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. 22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004 Evidence for Supernova Light in All Gamma-Ray Burst Afterglows A. Zeh, S. Klose Thur¨ inger Landessternwarte Tautenburg, 07778 Tautenburg, Germany D. H. Hartmann Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 We present an update of our systematic analyses of all Gamma-Ray Burst (GRB) afterglow data, now published through the end of 2004, in an attempt to detect the predicted supernova light component. We fit the observed photometric light curves as the sum of an afterglow, an underlying host galaxy, and a supernova component. The latter is modeled using published UBV RI light curves of SN 1998bw as a template. The total sample of afterglows with established redshifts contains now 29 bursts (GRB 970228 - GRB 041006). For 13 of them a weak supernova excess (scaled to SN 1998bw) was found. In agreement with our earlier result [47] we find that also in the updated sample all bursts with redshift ∼< 0.7 show a supernova excess in their afterglow light curves.
    [Show full text]
  • The X-Ray Afterglow of GRB 030329
    A&A 409, 983–987 (2003) Astronomy DOI: 10.1051/0004-6361:20031127 & c ESO 2003 Astrophysics The X-ray afterglow of GRB 030329 A. Tiengo1,2,S.Mereghetti1, G. Ghisellini3,E.Rossi4, G. Ghirlanda1, and N. Schartel5 1 Istituto di Astrofisica Spaziale e Fisica Cosmica – CNR, Sezione di Milano “G.Occhialini”, Via Bassini 15, 20133 Milano, Italy 2 Universit`a degli Studi di Milano, Dipartimento di Fisica, v. Celoria 16, 20133 Milano, Italy 3 INAF-Osservatorio Astronomico di Brera, v. Bianchi 46, 23907 Merate (LC), Italy 4 Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, UK 5 XMM-Newton Science Operation Center, ESA, Vilspa, Apartado 50727, 28080 Madrid, Spain Received 30 May 2003 / Accepted 23 July 2003 4 2 Abstract. We report on XMM-Newton and Rossi-XTE observations of the bright (fluence 10− erg cm− ) and nearby (z = 0.1685) Gamma-Ray Burst GRB 030329 associated to SN2003dh. The first Rossi-XTE observation,∼ 5 hours after the burst, shows a flux decreasing with time as a power law with index 0.9 0.3. Such a decay law is only marginally consistent with a ± further Rossi-XTE measurement (at t tGRB 30 hr). Late time observations of this bright afterglow at X-ray wavelengths have the advantage, compared to optical observations,− ∼ of not being affected by contributions from the supernova and host galaxy. 14 2 1 AfirstXMM-Newton observation, at t tGRB 37 days, shows a flux of 4 10− erg cm− s− (0.2–10 keV). The spectrum − ∼ 20 ×2 is a power law with photon index Γ=1.9 and absorption <2.5 10 cm− , consistent with the Galactic value.
    [Show full text]
  • L17 SPECTROSCOPIC DISCOVERY of the SUPERNOVA 2003Dh
    The Astrophysical Journal, 591:L17–L20, 2003 July 1 ᭧ 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. SPECTROSCOPIC DISCOVERY OF THE SUPERNOVA 2003dh ASSOCIATED WITH GRB 0303291 K. Z. Stanek,2 T. Matheson,2 P. M. Garnavich,3 P. Martini,4 P. Berlind,5 N. Caldwell,2 P. Challis,2 W. R. Brown,2 R. Schild,2 K. Krisciunas,6,7 M. L. Calkins,5 J. C. Lee,8 N. Hathi,9 R. A. Jansen,9 R. Windhorst,9 L. Echevarria,9 D. J. Eisenstein,8 B. Pindor,10 E. W. Olszewski,8 P. Harding,11 S. T. Holland,3 and D. Bersier2 Received 2003 April 13; accepted 2003 May 20; published 2003 June 6 ABSTRACT We present early observations of the afterglow of GRB 030329 and the spectroscopic discovery of its associated supernova SN 2003dh. We obtained spectra of the afterglow of GRB 030329 each night from March 30.12 (0.6 days after the burst) to April 8.13 (UT) (9.6 days after the burst). The spectra cover a wavelength range of ∝ Ϫ0.9 350–850 nm. The early spectra consist of a power-law continuum (Fn n ) with narrow emission lines orig- inating from H ii regions in the host galaxy, indicating a low redshift ofz p 0.1687 . However, our spectra taken after 2003 April 5 show broad peaks in flux characteristic of a supernova. Correcting for the afterglow emission, we find that the spectrum of the supernova is remarkably similar to the Type Ic “hypernova” SN 1998bw. While the presence of supernovae has been inferred from the light curves and colors of gamma-ray burst afterglows in the past, this is the first direct, spectroscopic confirmation that a subset of classical gamma-ray bursts originate from supernovae.
    [Show full text]
  • XMM-Newton Observations of Gamma-Ray Bursts
    XMMXMM--NEWTONNEWTON OBSERVATIONSOBSERVATIONS OFOF GAMMAGAMMA--RAYRAY BURSTBURST AFTERGLOWSAFTERGLOWS Presentation for: Four Years of Chandra Observations: A Tribute to Riccardo Giacconi Norbert Schartel (XMM-Newton Science Operations Centre, European Space Agency, Madrid, Spain, e-mail: [email protected]) XMM-Newton Norbert Schartel 1 XMM-Newton Observations of Gamma-Ray Burst Afterglows •• Overview:Overview: ––ConstraintsConstraints andand ObservationsObservations ––ScientificScientific ResultsResults • GRB 030329: X-ray afterglow after 61 days • GRB 011211 and GRB 030227: X-ray emission lines • GRB 001025A: the “Dark Bursts” ––ScientificScientific PerspectivesPerspectives • X-ray emission lines • Dark Bursts • Short Bursts XMM-Newton Norbert Schartel 2 Constraints and Observations • the majority of GRB afterglows are observed as TOOs based on the detections of other high energy satellites • time delay with respect to GRB notification: – 4.00 hours (evaluation, generation of time line, stop of ongoing observation) – 0.50 hours (target acquisition) – 0.50 hours (reaction wheel bias) – 1.00 hours (calculation of offset-maps for EPIC-pn) – ?.?? hours (slew with 90 degrees per hour) – ?.?? hours (visibility constraints) • TOO observations, which are not violating data rights of other observations, are immediately public after standard pipeline processing XMM-Newton Norbert Schartel 3 Constraints and Observaitons •• observations:observations: – in total 11 observations in the direction of 8 GRBs – 6 observations within 2 days –
    [Show full text]
  • Very High Energy Observations of Gamma-Ray Burst Locations with the Whipple Telescope D
    Physics Physics Research Publications Purdue University Year 2007 Very high energy observations of gamma-ray burst locations with the whipple telescope D. Horan, R. W. Atkins, H. M. Badran, G. Blaylock, S. M. Bradbury, J. H. Buckley, K. L. Byrum, O. Celik, Y. C. K. Chow, P. Cogan, W. Cui, M. K. Daniel, I. D. Perez, C. Dowdall, A. D. Falcone, D. J. Fegan, S. J. Fegan, J. P. Finley, P. Fortin, L. F. Fortson, G. H. Gillanders, J. Grube, K. J. Gutierrez, J. Hall, D. Hanna, J. Holder, S. B. Hughes, T. B. Humensky, G. E. Kenny, M. Kertzman, D. B. Kieda, J. Kildea, H. Krawczynski, F. Krennrich, M. J. Lang, S. LeBohec, G. Maier, P. Moriarty, T. Nagal, R. A. Ong, J. S. Perkins, D. Petry, J. Quinn, M. Quinn, K. Ragan, P. T. Reynolds, H. J. Rose, M. Schroedter, G. H. Sembroski, D. Steele, S. P. Swordy, J. A. Toner, L. Valcarcel, V. V. Vassiliev, R. G. Wagner, S. P. Wakely, T. C. Weekes, R. J. White, and D. A. Williams This paper is posted at Purdue e-Pubs. http://docs.lib.purdue.edu/physics articles/357 The Astrophysical Journal, 655:396Y405, 2007 January 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. VERY HIGH ENERGY OBSERVATIONS OF GAMMA-RAY BURST LOCATIONS WITH THE WHIPPLE TELESCOPE D. Horan,1 R. W. Atkins,2 H. M. Badran,3 G. Blaylock,4 S. M. Bradbury,5 J. H. Buckley,6 K. L. Byrum,7 O. Celik,8 Y. C. K. Chow,8 P.
    [Show full text]
  • The Surroundings of Gamma-Ray Bursts: Constraints on Progenitors 3
    The Surroundings of Gamma-Ray Bursts: Constraints on Progenitors Roger A. Chevalier Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903, USA [email protected] Summary. The association of a supernova with a gamma-ray burst (GRB 030329) implies a massive star progenitor, which is expected to have an environment formed by pre-burst stellar winds. Although some sources are consistent with the expected wind environment, many are not, being better fit by a uniform density environment. One possibility is that this is a shocked wind, close to the burst because of a high interstellar pressure and a low mass loss density. Alternatively, there is more than one kind of burst progenitor, some of which interact directly with the interstellar medium. Another proposed environment is a pulsar wind bubble that has expanded inside a supernova, which requires that the supernova precede the burst. 1 Introduction Some of the best evidence for nature of gamma-ray burst (GRB) progenitors has come from the identification of the Type Ic supernovae SN 1998bw with GRB 980425 [18] and of the recent SN 2003dh with GRB 030329 [49]. The finding of these events supports models of long-duration GRBs originating from stripped massive stars [35]. The surroundings of massive stars are ex- pected to be shaped by the winds emanating from the progenitor stars. Clear evidence for the signature of a wind has been difficult to establish, and the possibility remains that there is more than one type of progenitor for the long-duration bursts. Direct interaction with the interstellar medium might arXiv:astro-ph/0309637v1 23 Sep 2003 be expected if the progenitor involves a compact binary system.
    [Show full text]
  • No Supernovae Associated with Two Long-Duration Γ-Ray Bursts
    1 No supernovae associated with two long-duration γ-ray bursts Johan P. U. Fynbo1, Darach Watson1, Christina C. Thöne1, Jesper Sollerman1,2, Joshua S. Bloom3, Tamara M. Davis1, Jens Hjorth1, Páll Jakobsson4, Uffe G. Jørgensen5, John F. Graham6, Andrew S. Fruchter6, David Bersier7, Lisa Kewley8, Arnaud Cassan9, José María Castro Cerón1, Suzanne Foley10, Javier Gorosabel11, Tobias C. Hinse5, Keith D. Horne12, Brian L. Jensen1, Sylvio Klose13, Daniel Kocevski3, Jean-Baptiste Marquette14, Daniel Perley3, Enrico Ramirez-Ruiz15,16, Maximilian D. Stritzinger1, Paul M. Vreeswijk17,18, Ralph A. M. Wijers19, Kristian G. Woller5, Dong Xu1, Marta Zub6 1Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark 2Department of Astronomy, Stockholm University, Sweden 3Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720, USA 4Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AB, UK 5Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark 6Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA 7Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK 2 8University of Hawaii, Institute of Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, US 9Astronomisches Rechen-Institut (ARI), Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchof Str.
    [Show full text]
  • Possible Class of Nearby Gamma-Ray Burst / Gravitational Wave Sources
    Possible Class of Nearby Gamma-Ray Burst / Gravitational Wave Sources Jay P. Norris NASAIGoddard Space Flight Center Laboratoly for High Energy Astrophysics Abstract. A possible subclass of gamma-ray bursts - those with few, wide pulses, spectral lags of order one to several seconds, and soft spectra - has been identified. Their Log[N]-Logpp] distribution approximates a -312 power-law, suggesting homogeneity and relatively nearby sources. These mostly dim bursts account for - 50% of the BATSE sample of long bursts near that instrument’s trigger threshold, suggesting that this subluminous class constitutes a more common variety than the more familiar burst sources which lie at truly cosmological distances. Theoretical scenarios predicted such a class, motivated by their exemplar GRB 980425 (SN 1998bw) lying at a distance of - 38 Mpc. The observations are explained by invoking off-axis viewing of the GRB jet and/or bulk Lorentz factors of order a few. Long-lag bursts show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of -0.10 * 0.04, similar to that for SNe type Ib/c within the same volume. The rate of the observed subluminous bursts is of order % that of SNe Ibk. Evidence for a sequential relationship between SNe Ib/c and GRBs is critiqued for two cases, as simultaneity of the SN and GRB events may be important for detection of the expected gravitational wave signal; at most, SN to GRB delays appear to be a few days. SN asymmetries and ultrarelativistic GRB jets suggest the possibility of rapid rotation in the pre-collapse objects, a primary condition required for highly non- axisymmetric SN collapse to produce strong gravitational waves.
    [Show full text]
  • Inhomogeneities in the Light Curves of Gamma-Ray Bursts Afterglow E.D
    Draft version April 30, 2018 Preprint typeset using LATEX style emulateapj v. 12/16/11 INHOMOGENEITIES IN THE LIGHT CURVES OF GAMMA-RAY BURSTS AFTERGLOW E.D. Mazaeva1, A.S. Pozanenko1;2 and P.Yu. Minaev1 1Space Research Institute, 84/32 Profsoyuznaya Str., Moscow 117997, Russia 2National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow 101000, Russia Draft version April 30, 2018 Abstract We discuss the inhomogeneous behavior of gamma-ray burst afterglow light curves in optic. We use well-sampled light curves based on mostly our own observations to find and identify deviations (inhomogeneities) from broken power law. By the inhomogeneous behavior we mean flashes, bumps, slow deviations from power law (wiggles) in a light curve. In particular we report parameters of broken power law, describe phenomenology, compare optical light curves with X-ray ones and classify the inhomogeneities. We show that the duration of the inhomogeneities correlates with their peak time relative to gamma-ray burst (GRB) trigger and the correlation is the same for all types of inhomogeneities. Subject headings: Gamma-ray bursts; afterglow; inhomogeneous behavior; flares; bumps; wiggles 1. INTRODUCTION TABLE 1 In general, optical light curves of the gamma-ray bursts Properties of the analyzed GRBs a b (GRBs) in the afterglow phase are described fairly well GRB Trigger Time T90 Redshift Refs. by smoothly broken-power law (Beuermann et al. 1999) (UT) (sec) with temporal indices in the range from -0.5 to -2.5 030329 11:37:14.67 22.9 0.1685 c d (Kr¨uhler2012). However, for the many well-sampled op- 151027A 03:58:24.15 130 ± 6 0.81 160131A 08:20:16.22 325 ± 72 0.972 e tical light curves after subtracting the host-galaxy com- 160227A 19:32:08.09 317 ± 75 2.38 f ponent significant deviations (inhomogeneities) from the 160625B 22:40:16.28 35.1 ± 0.2 1.406 g smoothly broken-power law are observed.
    [Show full text]
  • Searching for the Long-Duration Gamma-Ray Burst Progenitor Robert Mesler
    University of New Mexico UNM Digital Repository Physics & Astronomy ETDs Electronic Theses and Dissertations 2-14-2014 Searching for the Long-Duration Gamma-Ray Burst Progenitor Robert Mesler Follow this and additional works at: https://digitalrepository.unm.edu/phyc_etds Recommended Citation Mesler, Robert. "Searching for the Long-Duration Gamma-Ray Burst Progenitor." (2014). https://digitalrepository.unm.edu/ phyc_etds/46 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Physics & Astronomy ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Robert Mesler Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Ylva Pihlström , Chairperson Greg Taylor Rich Rand Mark Gilmore Blank Blank Blank Blank Blank Searching for the Long-Duration Gamma Ray Burst Progenitor by Robert A. Mesler, III B.S., James Madison University, 2008 M.S., Physics, University of New Mexico, 2011 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico December, 2013 c 2013, Robert A. Mesler, III iii Dedication To my parents, Bob and Kathy, without whom this dissertation would never have been possible. iv Acknowledgments Many thanks are in order... To my advisor, Ylva Pihlstr¨om, for her support and advice at every step of the long road that ended with this dissertation. Thank you for making graduate school such a challenging, and yet richly rewarding experience.
    [Show full text]
  • Four GRB-Supernovae at Redshifts Between 0.4 and 0.8 the Bursts GRB 071112C, 111228A, 120714B, and 130831A?
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 August 9, 2018 Four GRB-Supernovae at Redshifts between 0.4 and 0.8 The bursts GRB 071112C, 111228A, 120714B, and 130831A? S. Klose1, S. Schmidl1, D. A. Kann1; 2, A. Nicuesa Guelbenzu1, S. Schulze3; 4; 5, J. Greiner6, F. Olivares5; 7, T. Krühler6, P. Schady6, P. M. J. Afonso8, R. Filgas9, J. P. U. Fynbo10, D. A. Perley11, A. Rau6, A. Rossi12, K. Takats5, M. Tanga6, A. C. Updike13, and K. Varela6 (Affiliations can be found after the references) Received 29 January 2018 ABSTRACT Twenty years ago, GRB 980425/SN 1998bw revealed that long Gamma-Ray Bursts (GRBs) are physically associated with broad-lined type Ic supernovae. Since then more than 1000 long GRBs have been localized to high angular precision, but only in ∼ 50 cases the underlying supernova (SN) component was identified. Using the multi-channel imager GROND (Gamma-Ray Burst Optical Near-Infrared Detector) at ESO/La Silla, during the last ten years we have devoted a substantial amount of observing time to reveal and to study SN components in long-GRB afterglows. Here we report on four more GRB-SNe (associated with GRBs 071112C, 111228A, 120714B, and 130831A) which were discovered and/or followed-up with GROND and whose redshifts lie between z = 0:4 and 0.8. We study their afterglow light curves, follow the associated SN bumps over several weeks, and characterize their host galaxies. Using SN 1998bw as a template, the derived SN explosion parameters are fully consistent with the corresponding properties of the so-far known GRB-SN ensemble, with no evidence for an evolution of their properties as a function of redshift.
    [Show full text]
  • Ahypernova'model for SN 1998Bw Associated with Gamma-Ray Burst Of
    Under embargo at NATURE (accepted July 27; submitted June 11, 1998) A ‘Hypernova’ model for SN 1998bw associated with gamma-ray burst of 25 April 1998 1 K. Iwamoto∗, P.A. Mazzali†, K. Nomoto∗,††, H. Umeda∗,††, T. Nakamura∗, F. Patat‡, I.J. Danziger†, T.R. Young∗, T. Suzuki∗,††, T. Shigeyama∗,††, T. Augusteijn‡, V. Doublier‡, J.-F. Gonzalez‡, H. Boehnhardt‡, J. Brewer‡ O.R. Hainaut‡, C. Lidman‡, B. Leibundgut⋆, E. Cappellaro§, M. Turatto§, T.J. Galamak, P.M. Vreeswijkk, C. Kouveliotou¶, J. van Paradijsk,‡‡, E. Pian∗∗, E. Palazzi∗∗, F. Frontera∗∗ ∗Department of Astronomy, School of Science, University of Tokyo, Tokyo 113-0033, Japan †Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34131 Trieste, Italy ‡European Southern Observatory, Casilla 19001, Santiago 19, Chile §Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy kAstronomical Institute “Anton Pannekoek”, University of Amsterdam, and Center for High Energy Astrophysics, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands ⋆European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching, Germany ¶NASA Marshall Space Flight Center, ES-84, Huntsville, AL 35812, USA ∗∗Istituto Tecnologie e Studio Radiazioni Extraterrestri, CNR, Bologna, Italy ††Research Center for the Early Universe, School of Science, University of Tokyo, Tokyo 113-0033, Japan ‡‡Department of Physics, University of Alabama, Huntsville, AL 35899, USA arXiv:astro-ph/9806382v2 6 Aug 1998 1Partially based on observations collected at ESO-La Silla 1 The discovery of the peculiar supernova (SN) 1998bw and its possible association with the gamma-ray burst (GRB) 9804251,2,3 provide new clues to the understanding of the explosion mechanism of very massive stars and to the origin of some classes of gamma- ray bursts.
    [Show full text]