UNITED STATES NAVY Sia JUMP EXPERIENCE and FUTURE APPLICATIONS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
China's Aircraft Carrier Ambitions
CHINA’S AIRCRAFT CARRIER AMBITIONS An Update Nan Li and Christopher Weuve his article will address two major analytical questions. First, what are the T necessary and suffi cient conditions for China to acquire aircraft carriers? Second, what are the major implications if China does acquire aircraft carriers? Existing analyses on China’s aircraft carrier ambitions are quite insightful but also somewhat inadequate and must therefore be updated. Some, for instance, argue that with the advent of the Taiwan issue as China’s top threat priority by late 1996 and the retirement of Liu Huaqing as vice chair of China’s Central Military Commission (CMC) in 1997, aircraft carriers are no longer considered vital.1 In that view, China does not require aircraft carriers to capture sea and air superiority in a war over Taiwan, and China’s most powerful carrier proponent (Liu) can no longer infl uence relevant decision making. Other scholars suggest that China may well acquire small-deck aviation platforms, such as helicopter carriers, to fulfi ll secondary security missions. These missions include naval di- plomacy, humanitarian assistance, disaster relief, and antisubmarine warfare.2 The present authors conclude, however, that China’s aircraft carrier ambitions may be larger than the current literature has predicted. Moreover, the major implications of China’s acquiring aircraft carriers may need to be explored more carefully in order to inform appropriate reactions on the part of the United States and other Asia-Pacifi c naval powers. This article updates major changes in the four major conditions that are necessary and would be largely suffi cient for China to acquire aircraft carriers: leadership endorsement, fi nancial affordability, a relatively concise naval strat- egy that defi nes the missions of carrier operations, and availability of requisite 14 NAVAL WAR COLLEGE REVIEW technologies. -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
A Brief Review on Electromagnetic Aircraft Launch System
International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 5, Issue-6, Jun.-2017 http://iraj.in A BRIEF REVIEW ON ELECTROMAGNETIC AIRCRAFT LAUNCH SYSTEM 1AZEEM SINGH KAHLON, 2TAAVISHE GUPTA, 3POOJA DAHIYA, 4SUDHIR KUMAR CHATURVEDI Department of Aerospace Engineering, University of Petroleum and Energy Studies, Dehradun, India E-mail: [email protected] Abstract - This paper describes the basic design, advantages and disadvantages of an Electromagnetic Aircraft Launch System (EMALS) for aircraft carriers of the future along with a brief comparison with traditional launch mechanisms. The purpose of the paper is to analyze the feasibility of EMALS for the next generation indigenous aircraft carrier INS Vishal. I. INTRODUCTION maneuvering. Depending on the thrust produced by the engines and weight of aircraft the length of the India has a central and strategic location in the Indian runway varies widely for different aircraft. Normal Ocean. It shares the longest coastline of 7500 runways are designed so as to accommodate the kilometers amongst other nations sharing the Indian launch for such deviation in takeoff lengths, but the Ocean. India's 80% trade is via sea routes passing scenario is different when it comes to aircraft carriers. through the Indian Ocean and 85% of its oil and gas Launch of an aircraft from a mobile platform always are imported through sea routes. Indian Ocean also requires additional systems and methods to assist the serves as the locus of important international Sea launch because the runway has to be scaled down, Lines Of Communication (SLOCs) . Development of which is only about 300 feet as compared to 5,000- India’s political structure, industrial and commercial 6,000 feet required for normal aircraft to takeoff from growth has no meaning until its shores are protected. -
Off Airport Ops Guide
Off Airport Ops Guide TECHNIQUES FOR OFF AIRPORT OPERATIONS weight and balance limitations for your aircraft. Always file a flight plan detailing the specific locations you intend Note: This document suggests techniques and proce- to explore. Make at least 3 recon passes at different levels dures to improve the safety of off-airport operations. before attempting a landing and don’t land unless you’re It assumes that pilots have received training on those sure you have enough room to take off. techniques and procedures and is not meant to replace instruction from a qualified and experienced flight instruc- High Level: Circle the area from different directions to de- tor. termine the best possible landing site in the vicinity. Check the wind direction and speed using pools of water, drift General Considerations: Off-airport operations can be of the plane, branches, grass, dust, etc. Observe the land- extremely rewarding; transporting people and gear to lo- ing approach and departure zone for obstructions such as cations that would be difficult or impossible to reach in trees or high terrain. any other way. Operating off-airport requires high perfor- mance from pilot and aircraft and acquiring the knowledge Intermediate: Level: Make a pass in both directions along and experience to conduct these operations safely takes either side of the runway to check for obstructions and time. Learning and practicing off-airport techniques under runway length. Check for rock size. Note the location of the supervision of an experienced flight instructor will not the touchdown area and roll-out area. Associate land- only make you safer, but also save you time and expense. -
Human Factors of Flight-Deck Checklists: the Normal Checklist
NASA Contractor Report 177549 Human Factors of Flight-Deck Checklists: The Normal Checklist Asaf Degani San Jose State University Foundation San Jose, CA Earl L. Wiener University of Miami Coral Gables, FL Prepared for Ames Research Center CONTRACT NCC2-377 May 1990 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 CONTENTS 1. INTRODUCTION ........................................................................ 2 1.1. The Normal Checklist .................................................... 2 1.2. Objectives ...................................................................... 5 1.3. Methods ......................................................................... 5 2. THE NATURE OF CHECKLISTS............................................... 7 2.1. What is a Checklist?....................................................... 7 2.2. Checklist Devices .......................................................... 8 3. CHECKLIST CONCEPTS ......................................................... 18 3.1. “Philosophy of Use” .................................................... 18 3.2. Certification of Checklists ........................................... 22 3.3. Standardization of Checklists ...................................... 24 3.4. Two/three Pilot Cockpit ............................................... 25 4. AIRLINE MERGERS AND ACQUISITIONS .......................... 27 5. LINE OBSERVATIONS OF CHECKLIST PERFORMANCE.. 29 5.1. Initiation ...................................................................... -
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner Andrew S. Hahn 1 NASA Langley Research Center, Hampton, VA, 23681 Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft’s characteristics. Nomenclature CTOL = conventional takeoff and landing FAA = Federal Aviation Administration FAR = Federal Aviation Regulation RJ = regional jet STOL = short takeoff and landing UCD = three-dimensional Weissinger lifting line aerodynamics program I. Introduction EMAND for air travel over the next fifty to D seventy-five years has been projected to be as high as three times that of today. Given that the major airport hubs are already congested, and that the ability to increase capacity at these airports by building more full- size runways is limited, unconventional solutions are being considered to accommodate the projected increased demand. Two possible solutions being considered are: Metroplex operations, and using existing underutilized runways at the major hub airports. -
Automatic Carrier Landing System for V/Stol Aircraft
AUTOMATIC CARRIER LANDING SYSTEM FOR V/STOL AIRCRAFT USING L1 ADAPTIVE AND OPTIMAL CONTROL by SHASHANK HARIHARAPURA RAMESH Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN AEROSPACE ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON December 2015 Copyright © by SHASHANK HARIHARAPURA RAMESH 2015 All Rights Reserved To my parents, Meera and Ramesh ACKNOWLEDGEMENTS My deepest gratitude goes to my supervising professor, Dr Kamesh Subbarao for providing me an opportunity to work on a topic of my interest, for his guidance and encouragement for research. I would like to thank Dr. Atilla Dogan and Dr. Donald Wilson for being a part of my thesis committee. I am thankful to my colleagues at Aerospace Systems Laboratory - Dr Ghassan Atmeh, Dr Pavan Nuthi, Dr Alok Rege, and Pengkai Ru, for their invaluable inputs towards my research. Many thanks to Ameya Godbole, Tracie Perez, Paul Quillen and Ziad Bakhya for their support and encouragement. I would like to thank my roommates Vijay Gopal, Varun Vishwamitra, and Rohit Narayan for their patience, tolerance, and brotherly affection without which my sojourn at graduate school would have been burdensome. I would like to thank my parents for their unconditional love and support. It is only because of their dedication, hardwork, and sacrifice I am what I am today. I am thankful to my sister, Shobhita, and my grandmothers, for their moral support which provided me the strength to deal with uneasy times. Special thanks to my aunt and uncle, Shubha and Ravi Murthy who have been extremely supportive during my stay in USA. -
US Navy Flight Deck Hearing Protection Use Trends
U.S. Navy Flight Deck Hearing Protection Use Trends: Survey Results Valerie S. Bjorn Naval Air Systems Command AEDC/DOF 740 Fourth Street Arnold AFB, TN 38389-6000, USA [email protected] Christopher B. Albery Advanced Information Engineering Services - A General Dynamics Company 5200 Springfield Pike, WP-441 Dayton, OH 45431, USA [email protected] CDR Russell Shilling, Ph.D., MSC, USN Office of Naval Research - Medical and Biological S&T Division 800 N Quincy Street Arlington, VA 22217-5860, USA [email protected] Richard L. McKinley Air Force Research Laboratory (AFRL/HECB) 2610 Seventh Street, Bldg 441 Wright-Patterson AFB, OH 45433-7901 [email protected] ABSTRACT Hearing loss claims have risen steadily in the U.S. Department of Veterans Affairs across all military services for decades. The U.S. Navy, with U.S. Air Force and industry partners, is working to improve hearing protection and speech intelligibility for aircraft carrier flight deck crews who work up to 16 hours per day in 130-150 dB tactical jet aircraft noise. Currently, flight deck crews are required to wear double hearing protection: earplugs and earmuffs (in cranial helmet). Previous studies indicated this double hearing protection provides approximately 30 dB of noise attenuation when earplugs are inserted correctly and the cranial/earmuffs are well-fit and in good condition. To assess hearing protection practices and estimate noise attenuation levels for active duty flight deck crews, Naval Air Systems Command surveyed 301 U.S. Navy Atlantic and Pacific Fleet flight deck personnel from four aircraft carriers and two amphibious assault ships. -
Draft Environmental Assessment for Issuing an Experimental Permit to Spacex for Operation of the Grasshopper Vehicle at the Mcgregor Test Site, Texas September 2011
Federal Aviation Administration Draft Environmental Assessment for Issuing an Experimental Permit to SpaceX for Operation of the Grasshopper Vehicle at the McGregor Test Site, Texas September 2011 HQ-111451 Draft EA for Issuing an Experimental Permit to SpaceX for Operation of the Grasshopper Vehicle at the McGregor Test Site, Texas TABLE OF CONTENTS Section Page ACRONYMS AND ABBREVIATIONS ...................................................................................... iv 1. INTRODUCTION ....................................................................................................................1 1.1 Background .....................................................................................................................1 1.2 Purpose and Need for Agency Action .............................................................................2 1.3 Request for Comments on the Draft EA .........................................................................2 2. DESCRIPTION OF THE PROPOSED ACTION AND NO ACTION ALTERNATIVE ......3 2.1 Proposed Action ..............................................................................................................3 2.1.1 Grasshopper RLV ..............................................................................................5 2.1.1.1 Description ......................................................................................... 5 2.1.1.2 Pre-flight and Post-flight Activities ................................................... 5 2.1.1.3 Flight Profile (Takeoff, Flight, -
Path Planning for Autonomous Landing of Helicopter on the Aircraft Carrier
mathematics Article Path Planning for Autonomous Landing of Helicopter on the Aircraft Carrier Hanjie Hu 1,2, Yu Wu 3,* , Jinfa Xu 1 and Qingyun Sun 2 1 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; [email protected] (H.H.); [email protected] (J.X.) 2 Chongqing General Aviation Industry Group Co., Ltd., Chongqing 401135, China; [email protected] 3 College of Aerospace Engineering, Chongqing University, Chongqing 400044, China * Correspondence: [email protected]; Tel.: +86-023-6510-2510 Received: 23 August 2018; Accepted: 26 September 2018; Published: 27 September 2018 Abstract: Helicopters are introduced on the aircraft carrier to perform the tasks which are beyond the capability of fixed-wing aircraft. Unlike fixed-wing aircraft, the landing path of helicopters is not regulated and can be determined autonomously, and the path planning problem for autonomous landing of helicopters on the carrier is studied in this paper. To solve the problem, the returning flight is divided into two phases, that is, approaching the carrier and landing on the flight deck. The feature of each phase is depicted, and the conceptual model is built on this basis to provide a general frame and idea of solving the problem. In the established mathematical model, the path planning problem is formulated into an optimization problem, and the constraints are classified by the characteristics of the helicopter and the task requirements. The goal is to reduce the terminal position error and the impact between the helicopter and the flight deck. To obtain a reasonable landing path, a multiphase path planning algorithm with the pigeon inspired optimization (MPPIO) algorithm is proposed to adapt to the changing environment. -
Vtol.Org Urban / Municipality Planning & Land Use Sponsored By: Question & Answer Session
eVTOL Infrastructure Workshop Virtual Workshop #4 May 6, 2020 vtol.org Urban / Municipality Planning & Land Use Sponsored By: Question & Answer Session www.psands.com MODERATOR Yolanka Wulff Executive Director Community Air Mobility Initiative (CAMI) [email protected] (206) 660-8498 UAM Urban / Municipality Planning & Land Use PANELIST Rik Van Hemmen Chuck Clauser Brian Learn Darshan Divakaran President & Senior Partner Senior Architect Aviation Infrastructure Executive Aviation Consultant Martin & Ottaway PS&S Uber Aerospace Arizona Association [email protected] [email protected] [email protected] [email protected] (732) 224-1133 (856) 335-6015 (415) 312-5620 (919) 9874333 5/6/2020 VFS Webinar: UAM Urban / Municipality Planning & Land Use 2 Does "6 passengers" include the Question 1 pilot(s)? 5/6/2020 VFS Webinar: UAM Urban / Municipality Planning & Land Use 3 Answer 1 • Rik – No it is just paying passengers. Others are crew. • Brian – Current Uber CRM is anticipating (4) Passengers and (1) Pilot. 5/6/2020 VFS Webinar: UAM Urban / Municipality Planning & Land Use 4 Would US Coast Guard regulations apply if you have multiple aircraft on Question 2 the waterborne landing platform simultaneously that sum up to more than 6 paying passengers? 5/6/2020 VFS Webinar: UAM Urban / Municipality Planning & Land Use 5 Answer 2 • Rik – The simple answer is yes. • As such, in principle, if you have one barge with two six passenger VTOLs landing at the same time, you are not USCG compliant, but if you cut the barge in half and make two smaller barges you would be compliant. Having said that if one were to try that trick, I would expect that the USCG and others will find a reason why you cannot get away with that too easily. -
Culture and Flight Deck Operations
Culture and Flight Deck Operations Edwin Hutchins University of California San Diego La Jolla, CA 92093-0515 Barbara E. Holder Boeing Commercial Airplanes Seattle, WA 98124 R. Alejandro Pérez ASPA de Mexico Mexico, D.F. Prepared for the Boeing Company University of California San Diego Sponsored Research Agreement 22-5003 January, 2002 Abstract Culture is widely believed to play an important role in the international aviation system. Given the many factors, including the infrastructure of aviation, that affect aviation safety, the role of culture remains uncertain. It is accepted that culture must exert some influence on the patterns of behavior enacted by flight crews on the flight deck, but different views of culture produce different hypotheses about the role of culture in the organization of behavior. We review the history of ideas about culture and describe a recently developed concept of culture that is based in contemporary cognitive science. We then use this modern theory of culture to evaluate recent attempts to understand the role of culture on the flight deck. Finally, we sketch a methodology for the study of culture on the flight deck. Keywords: Culture, aviation safety, flight deck operations, anthropology. Acknowledgements We are grateful to The Boeing Company for funding this research and for creating an opportunity to discuss the issues and questions surrounding the role of culture in flight deck operations. We thank Randy Mumaw for many insightful comments and interesting discussions. 2 Executive Summary Culture is widely believed to play an important role in the international aviation system. Some attempts have been made to link the widely differing accident rates in different regions of the world to differences in regional or national culture (Boeing, 1994; Soeters & Boer, 2000).