Singularities of (L)MMP and applications Massimiliano Mella Dipartimento di Matematica, Universita` di Ferrara, Italia E-mail address:
[email protected] 1991 Mathematics Subject Classification. Primary 14E30; Secondary 14J17, 14B05,14J30 Key words and phrases. terminal, canonical, log pairs, minimal model program Partially supported by “Geometria sulle Variet`aAlgebriche”(MUR). Introduction These lectures are devoted to an introduction to singularities occurring in the various flavors of Minimal Model Program. In these days an enormous interest came back to the program thank to the amazing results of Birkar, Cascini, Hacon, and Mc Kernan, [BCHM]. The Grenoble school is therefore a lucky coincidence to attract even more interest on the subject. The first chapter is a tribute to [YPG]. The wonderful paper of Miles Reid that allowed various generation of mathematician to understand singularities and how to work with them. It is not by chance that after more than twenty years this is still a milestone of the theory. Here I revise the main constructions and results of terminal and canonical 3-folds. My main aim is to give examples and geometric intuition to this technical part of MMP theory. For this reason the first and the last section are, hopefully, half way between examples and exercises one should work out by himself on his desk. The second chapter is dedicated to singularities of pairs. Here it is difficult to put technicalities apart. I hope that the applications to birational and biregular geometry given in the last two sections will help swallow all the definitions. For this part there are various references, the ones that I mainly follow are, [U2], [KM2], and [C+].