Pesticide Mixes!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemicals Implicated in Colony Collapse Disorder
Chemicals Implicated While research is underway to determine the cause of Colony Collapse Disorder (CCD), pesticides have emerged as one of the prime suspects. Recent bans in Europe attest to the growing concerns surrounding pesticide use and honeybee decline. Neonicotinoids Neonicotinoids are a relatively new class of insecticides that share a common mode of action that affect the central nervous system of insects, resulting in paralysis and death. They include imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam. According to the EPA, uncertainties have been identified since their initial registration regarding the potential environmental fate and effects of neonicotinoid pesticides, particularly as they relate to pollinators. Studies conducted in the late 1990s suggest that neonicotinic residues can accumulate in pollen and nectar of treated plants and represent a potential risk to pollinators. There is major concern that neonicotinoid pesticides may play a role in recent pollinator declines. Neonicotinoids can also be persistent in the environment, and when used as seed treatments, translocate to residues in pollen and nectar of treated plants. The potential for these residues to affect bees and other pollinators remain uncertain. Despite these uncertainties, neonicotinoids are beginning to dominate the market place, putting pollinators at risk. The case of the neonicotinoids exemplifies two critical problems with current registration procedures and risk assessment methods for pesticides: the reliance on industry-funded science that contradicts peer-reviewed studies and the insufficiency of current risk assessment procedures to account for sublethal effects of pesticides. • Imidacloprid Used in agriculture as foliar and seed treatments, for indoor and outdoor insect control, home gardening and pet products, imidacloprid is the most popular neonicotinoid, first registered in 1994 under the trade names Merit®, Admire®, Advantage TM. -
Froggatt) (Diptera: Tephritidae
insects Article Efficacy of Chemicals for the Potential Management of the Queensland Fruit Fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) Olivia L. Reynolds 1,2,*, Terrence J. Osborne 2 and Idris Barchia 3 1 Graham Centre for Agricultural Innovation (New South Wales Department of Primary Industries and Charles Sturt University), Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW 2567, Australia 2 New South Wales Department of Primary Industries, Biosecurity and Food Safety, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW 2567, Australia; [email protected] 3 New South Wales Department of Primary Industries, Chief Scientist’s Branch, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW 2567, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-246-406-200 Academic Editors: Michael J. Stout, Jeff Davis, Rodrigo Diaz and Julien M. Beuzelin Received: 2 February 2017; Accepted: 2 May 2017; Published: 9 May 2017 Abstract: This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt). Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted to oviposit on fruit dipped in insecticide and aged 0, 1, 3, or 5 days, plus the production of offspring. Bioassay 3 tested infested fruit sprayed with insecticide. The field bioassay trialed the mortality of adults exposed to one- and five-day insecticide residues on peaches, and subsequent offspring. Abamectin, alpha-cypermethrin, clothianidin, dimethoate (half-label rate), emamectin benzoate, fenthion (half- and full-label rate), and trichlorfon were the most efficacious in bioassay 1, across 18 tested insecticide treatments. -
Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin
www.nature.com/scientificreports OPEN Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin Received: 24 November 2016 Annely Brandt1, Katharina Grikscheit2, Reinhold Siede1, Robert Grosse2, Marina Doris Accepted: 19 May 2017 Meixner 1 & Ralph Büchler1 Published: xx xx xxxx Queen health is crucial to colony survival of honeybees, since reproduction and colony growth rely solely on the queen. Queen failure is considered a relevant cause of colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides can severely affect the immunocompetence of queens of western honeybees (Apis mellifera L.). In young queens exposed to thiacloprid (200 µg/l or 2000 µg/l) or clothianidin (10 µg/l or 50 µg/l), the total hemocyte number and the proportion of active, differentiated hemocytes was significantly reduced. Moreover, functional aspects of the immune defence namely the wound healing/melanisation response, as well as the antimicrobial activity of the hemolymph were impaired. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of queens, possibly leading to an impaired disease resistance capacity. Honeybees are highly eusocial insects that build colonies of several thousand individuals which contain only one fertile female, the queen1. This queen is responsible for all egg laying and brood production within the colony; consequently, her integrity and health is crucial for the colony’s performance and survival, and any impairment can result in adverse effects on colony fitness. In the worst case, if the workers are unable to replace a failing queen, the colony will perish2–4. -
Development of a CEN Standardised Method for Liquid Chromatography Coupled to Accurate Mass Spectrometry
Development of a CEN standardised method for liquid chromatography coupled to accurate mass spectrometry CONTENTS 1. Aim and scope ................................................................................................................. 2 2. Short description ................................................................................................................ 2 3. Apparatus and consumables ......................................................................................... 2 4. Chemicals ........................................................................................................................... 2 5. Procedure ........................................................................................................................... 3 5.1. Sample preparation ................................................................................................... 3 5.2. Recovery experiments for method validation ...................................................... 3 5.3. Extraction method ...................................................................................................... 3 5.4. Measurement .............................................................................................................. 3 5.5. Instrumentation and analytical conditions ............................................................ 4 5.5.1. Dionex Ultimate 3000 .......................................................................................... 4 5.5.2. QExactive Focus HESI source parameters ..................................................... -