Hazards Induced by Groundwater Recharge Under Rapid Urbanisation

Total Page:16

File Type:pdf, Size:1020Kb

Hazards Induced by Groundwater Recharge Under Rapid Urbanisation HAZARDS INDUCED BY GROUNDWATER RECHARGE UNDER RAPID URBANISATION GROWTH OF water-supply provision value for unsewered city without mains drainage aximmainsum sewerage installation WATER IMPORTED M FROM DISTANT SOURCE Lima 1000 GROUNDWATER Merida FROM WASTE DISPOSAL WASTE WAST WATER-SUPPLY AND WATER-SUPPLY Potential urban PEPERIURBAN recharger WELLFIELDS 500 (from mains leakage,le Santa urban drainagedrainag and GROUNDWATER Cruz FROM CITY NUCLEUSwastewater disposal)dis shallow wells deeper boreholes 200 INITIAL SETTLEMENT URBAN EXPANSION Hat Yai Water obtained Water obtained from Urban aquiferaq Water obtained from:- from shallow city city boreholes and largely abandonedab (i) peri-urban wellfield 100 WATER wells. wells. in favour of SUPPLY SUPPLY periurban wellfields. (ii) imported water Pr Natural (non-urban)se environmentob w abl ere e m - incipient contaminationd -i nurbanim waterw table - water table declines 50 city um value of urban aquifer wit h stabilisesstabilise but for outside city (cannot urbanmain aquiferaq meet increased water - possible urban well contaminatedcontamis drainage demand). yield reductions None due to water table - urban water-table Deep infiltration (mm/a) 20 decline. rises IMPACTS IMPACTS Recharge resulting - incipient contamination of from urbanization peri-urban wellfields 10 (Pre-urban recharge nil) Non-urban recharge- over exploitation - excess pollution - over exploitation loading ICAL ES - excess pollution - excess recharge 5 None loading (local to city centre) 2000 1000 500 200 100 50 20 10 HYDRO- CAUSES - excess pollution GEOLOGICAL Rainfall (mm/a) loading between: between: between: - urban groundwater - urban water supply - peri-urban water-users HUMIDNone usersSEMI-ARID (private vs public) vs wastewaterARID (municipal, irrigation, disposal rural supply) - public supply - water supply vs POTENTIAL CONFLICTS (peri-urban) and wastewater irrigation disposal/re-use Q.4 - How do I assess the extent of urban groundwater use and the status of aquifer development? Lawrence AR, Morris BL and Foster SSD 1998. Hazards Induced by Groundwater Under Rapid Urbanisation, in Maunds JG and Eddleston M (Eds) Geohazards in Engineering Geology. Geological Society, London, Engineering Geology Special Publications 15, 319-328. HAZARDS INDUCED BY GROUNDWATER RECHARGE UNDER RAPID URBANISATION A R Lawrence, B L Morris & S S D Foster British Geological Survey, Wallingford OX10 8BB, UK Abstract Urban population growth across most of Latin America and Asia is relentless. Rapid urbanisation has profound impacts on the hydrological cycle, including major changes in groundwater recharge. Existing infiltration mechanisms are radically modified, and new ones introduced, with evidence of an overall increase in recharge rates. There is also widespread diffuse pollution of groundwater by nitrogen compounds (normally nitrate, but sometimes ammonium), salinity (especially sodium chloride) and dissolved organic carbon. Groundwater contamination by petroleum and chlorinated hydrocarbons, and related synthetic organic compounds, and, on a more localised basis, pathogenic bacteria and viruses is also encountered. An analysis of the processes involved is made through citing detailed case histories. INTRODUCTION Urban Hydrogeological Cycle The provision of water-supply, sanitation and drainage are key elements of the urbanisation process. Major differences in development sequence exist between higher-income areas, where the process is normally planned in advance, and lower-income areas, where informal settlements are progressively consolidated into urban areas. However, common factors to most urbanisation are impermeabilisation of a significant proportion of the land surface and major importation of water from outside the urban limits. Sanitation and drainage arrangements, which are fundamental to consideration of the hydrological cycle (Lindh 1983), generally evolve with time and vary widely with differing patterns of urban development. In most developing towns and cities installation of mains sewerage systems lags significantly behind population growth and water-supply provision. Urbanisation causes radical changes in the frequency and rate of groundwater recharge, with a general tendency for volume to increase significantly and for quality to deteriorate substantially (Foster 1990). These changes cannot be measured directly and are thus difficult to quantify. The changes in recharge caused by urbanisation in turn influence groundwater levels and flow regimes in underlying aquifers. This can take considerable time, because the response constants of groundwater systems are normally the largest of all components of the urban hydrological cycle (Van de Ven 1990). It will usually be decades before aquifers reach equilibrium with the process of urbanisation. Abstraction frequently masks changes in recharge regime, especially when groundwater levels are falling due to local resource overexploitation. The most troublesome groundwater mounds are likely to develop under low-lying urban areas on relatively low-permeability unconfined aquifers, especially if they are not exploited for water-supply, as a result of poor water quality. Rising groundwater levels can affect the stability, integrity and operation of subsurface engineering structures and installations. Thus, while the hydrogeologist tends to speak of 'the impact of urbanisation on groundwater' in terms of large- scale, long-term, temporal changes, the geotechnologist tends to think in terms of 'the impact of groundwater on urban structures' in a site-specific, steady-state sense. 1 ANALYSIS OF IMPACTS ON GROUNDWATER A general summary of the principal urban processes affecting groundwater, and their relative impact, is given in Table 1. The impact of any given process will vary significantly with climatic regime, hydrogeological environment, and with the pattern of urban development itself. Table 1: Summary of impact of urbanisation processes on groundwater Process Effect On Subsurface Infiltration Implications Principal Rates Area Time Base For Quality Contaminants MODIFICATIONS TO NATURAL SYSTEM Surface impermeabilisation & drainage - roofs, paved areas Reduction Extensive Permanent Minimal None - stormwater soakaways Increase Extensive Intermittent Marginally Cl, HC, CHC negative - mains drainage Reduction Extensive Continuous None None - surface water canalisation Marginal Linear Variable None reduction Irrigation of amenity areas Increase Restricted Seasonal Variable N, Cl INTRODUCTION OF WATER- SERVICE NETWORK Water-supply system Increase Extensive Continuous Positive None Sanitation measures - unsewered Increase Extensive Continuous Negative N, FP - mains sewerage Marginal Extensive Continuous Marginally N, FP, DOC increase negatiive Cl chloride and other major ions DOC dissolved organic carbon N nitrogen compounds (nitrate or ammonium) HC hydrocarbon fuels CHC chlorinated hydrocarbons FP faecal pathogens Modifications to Natural Systems Surface Impermeabilisation and Drainage Urbanisation results in land-surface impermeabilisation, which reduces direct infiltration of excess rainfall, but also tends to lower evaporation and thus to increase, as well as accelerate, surface runoff. Pluvial drainage arrangements determine whether there will be a net change in overall groundwater recharge rate, but anything from a major reduction to a modest increase is possible. Surface impermeabilisation processes include the construction of roofs, and of paved areas, such as major highways, minor roads, parking lots, industrial patios, airport aprons, etc. While the proportion of the land area covered is a key factor, it should be noted that some types of urban pavement, such as tile, brick and porous asphalt, are, in fact, quite permeable and, conversely, that some unpaved surfaces become highly compacted with reduced infiltration capacity (Bouvier 1990). If no pluvial drainage system is installed, runoff will either infiltrate at the edge of impermeable surfaces or via soakaways, enter river channels, or accumulate in land-surface depressions. If pluvial (so-called storm water) drainage is installed, the mode of drainage-water disposal will exercise an important influence on urban groundwater recharge rates. The reduction in direct groundwater recharge, as a result of land-surface impermeabilisation, is quite commonly offset by increases in indirect recharge, when drainage is routed to soil soakaways or infiltration basins. 2 Although this is excellent water conservation practice, where drainage from major highways and industrial patios is included, it will represent a significant increase in the risk of groundwater pollution, due to spillages of hydrocarbon fuels and industrial chemicals in particular. Soakaways are also all too often used for the casual disposal of liquid waste from residential areas, such as used motor oils or for the illegal connection of septic-tank overflows. Urbanisation also involves radical modification to the condition of surface water courses, which in turn can affect either the recharge and quality, or the discharge, of groundwater. The effects vary widely with hydrogeological environment and climatic type. Irrigation of Amenity Areas In climates where irrigation has to be continuously or intermittently practised, excessive application is commonplace in parks and gardens, especially if water is applied by flooding from irrigation channels or hose pipes, as opposed to more efficient methods, such as sprinklers, which are more often used on sports fields.
Recommended publications
  • Groundwater Recharge from a Changing Landscape
    ST. ANTHONY FALLS LABORATORY Engineering, Environmental and Geophysical Fluid Dynamics Project Report No. 490 Groundwater Recharge from a Changing Landscape by Timothy Erickson and Heinz G. Stefan Prepared for Minnesota Pollution Control Agency St. Paul, Minnesota May, 2007 Minneapolis, Minnesota The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age or veteran status. 2 Abstract Urban development of rural and natural areas is an important issue and concern for many water resource management organizations and wildlife organizations. Change in groundwater recharge is one of the many effects of urbanization. Groundwater supplies to streams are necessary to sustain cold water organisms such as trout. An investigation of the changes of groundwater recharge associated with urbanization of rural and natural areas was conducted. The Vermillion River watershed, which is both a world class trout stream and on the fringes of the metro area of Minneapolis and St. Paul, Minnesota, was used for a case study. Substantial changes in groundwater recharge could destroy the cold water habitat of trout. In this report we give first an overview of different methods available to estimate recharge. We then present in some detail two models to quantify the changes in recharge that can be expected in a developing area. We finally apply these two models to a tributary watershed of the Vermillion River. In this report we discuss several techniques that can be used to estimate groundwater recharge: (1) the recession-curve-displacement method and (2) the base-flow-separation method that both use only streamflow records (Rutledge 1993, Lee and Chen 2003); (3) a recharge map developed by the USGS for the state of Minnesota (Lorenz and Delin 2007); (4) a minimal recharge map developed by the Minnesota Geological Survey using statistical methods (Ruhl et al.
    [Show full text]
  • The Federal Role in Groundwater Supply
    The Federal Role in Groundwater Supply Updated May 22, 2020 Congressional Research Service https://crsreports.congress.gov R45259 The Federal Role in Groundwater Supply Summary Groundwater, the water in aquifers accessible by wells, is a critical component of the U.S. water supply. It is important for both domestic and agricultural water needs, among other uses. Nearly half of the nation’s population uses groundwater to meet daily needs; in 2015, about 149 million people (46% of the nation’s population) relied on groundwater for their domestic indoor and outdoor water supply. The greatest volume of groundwater used every day is for agriculture, specifically for irrigation. In 2015, irrigation accounted for 69% of the total fresh groundwater withdrawals in the United States. For that year, California pumped the most groundwater for irrigation, followed by Arkansas, Nebraska, Idaho, Texas, and Kansas, in that order. Groundwater also is used as a supply for mining, oil and gas development, industrial processes, livestock, and thermoelectric power, among other uses. Congress generally has deferred management of U.S. groundwater resources to the states, and there is little indication that this practice will change. Congress, various states, and other stakeholders recently have focused on the potential for using surface water to recharge aquifers and the ability to recover stored groundwater when needed. Some see aquifer recharge, storage, and recovery as a replacement or complement to surface water reservoirs, and there is interest in how federal agencies can support these efforts. In the congressional context, there is interest in the potential for federal policies to facilitate state, local, and private groundwater management efforts (e.g., management of federal reservoir releases to allow for groundwater recharge by local utilities).
    [Show full text]
  • Miami-Dade County Drainage and Canals Flood Complaint Form
    MIAMI-DADE COUNTY DRAINAGE AND CANALS FLOOD COMPLAINT FORM Service Request # _____________ Complaint Date Time AM PM Resident/Complainant Name Address Telephone Nearest Street Intersection of Flooding or Location of Flooding Is this the first time you report this? Yes No If No, date PLEASE SELECT ONLY ONE (1) COMPLAINT TYPE AND ANSWER RELATED QUESTIONS FOR BETTER SERVICE Type of Complaint 302 Clogged Storm Drain Is the water on top of drain now? Yes No How long does it take for the water to drain? What is the exact location of the drain? Is the area a new development? Yes No Was there a recent drainage project in the area? Yes No 303 Standing Water (No Drain) How deep is the water? How hard did it rain? Light Moderate Heavy Is your property flooded? Yes No Is your property in a new development? Yes No Where is the nearest drain? Flooding/Standing Water (Localized) Is the water flooding the inside of your residence? Yes No Is the water in your driveway / swale? Yes No Is the water across the roadway? Yes No Is it affecting traffic? Yes No How long does the water remain after rainfall? Page 1 of 2 MIAMI-DADE COUNTY DRAINAGE AND CANALS FLOOD COMPLAINT FORM Canal Complaints Solid waste (floating debris, bottles, cans, etc.) present Aquatic vegetation overgrown Needs mowing / treating vegetation on canal bank Bank instability due to Erosion / Collapses are present Culvert cleaning needed Damaged culvert / Headwall Encroachment of Easement / Right of Way Cutting / trimming of trees on a canal Right of Way needed Damaged Guardrails / Fence Canal Signs damaged / down Other Other Nature of Complaint For more information, call (305) 372-6688 Page 2 of 2 .
    [Show full text]
  • Acid Sulfate Soil Materials
    Site contamination —acid sulfate soil materials Issued November 2007 EPA 638/07: This guideline has been prepared to provide information to those involved in activities that may disturb acid sulfate soil materials (including soil, sediment and rock), the identification of these materials and measures for environmental management. What are acid sulfate soil materials? Acid sulfate soil materials is the term applied to soils, sediment or rock in the environment that contain elevated concentrations of metal sulfides (principally pyriteFeS2 or monosulfides in the form of iron sulfideFeS), which generate acidic conditions when exposed to oxygen. Identified impacts from this acidity cause minerals in soils to dissolve and liberate soluble and colloidal aluminium and iron, which may potentially impact on human health and the environment, and may also result in damage to infrastructure constructed on acid sulfate soil materials. Drainage of peaty acid sulfate soil material also results in the substantial production of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O). The oxidation of metal sulfides is a function of natural weathering processes. This process is slow however, and, generally, weathering alone does not pose an environmental concern. The rate of acid generation is increased greatly through human activities which expose large amounts of soil to air (eg via excavation processes). This is most commonly associated with (but not necessarily confined to) mining activities. Soil horizons that contain sulfides are called ‘sulfidic materials’ (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite. This process transforms sulfidic material to sulfuric material when, on oxidation, the material develops a pH 4 or less (Isbell 1996; Soil Survey Staff 2003).
    [Show full text]
  • Drainage Water Management R
    doi:10.2489/jswc.67.6.167A RESEARCH INTRODUCTION Drainage water management R. Wayne Skaggs, Norman R. Fausey, and Robert O. Evans his article introduces a series of the most productive in the world. Drainage needed. Drainage water management, or papers that report results of field ditches or subsurface drains (tile or plastic controlled drainage, emerged as an effec- T studies to determine the effec- drain tubing) are used to remove excess tive practice for reducing losses of N in tiveness of drainage water management water and lower water tables, improve traf- drainage waters in the 1970s and 1980s. (DWM) on conserving drainage water ficability so that field operations can be The practice is inherently based on the and reducing losses of nitrogen (N) to sur- done in a timely manner, prevent water fact that the same drainage intensity is face waters. The series is focused on the logging, and increase yields. Drainage is not required all the time. It is possible to performance of the DWM (also called also needed to manage soil salinity in irri- dramatically reduce drainage rates during controlled drainage [CD]) practice in the gated arid and semiarid croplands. some parts of the year, such as the winter US Midwest, where N leached from mil- Drainage has been used to enhance crop months, without negatively affecting crop lions of acres of cropland contributes to production since the time of the Roman production. Drainage water management surface water quality problems on both Empire, and probably earlier (Luthin may also be used after the crop is planted local and national scales.
    [Show full text]
  • The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Research: A Journal of Natural and Social Sciences Great Plains Studies, Center for Spring 1998 The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies Garth van der Kamp National Hydrology Research Institute, Environment Canada Masaki Hayashi University of Calgary, Canada Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsresearch Part of the Other International and Area Studies Commons van der Kamp, Garth and Hayashi, Masaki, "The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies" (1998). Great Plains Research: A Journal of Natural and Social Sciences. 366. https://digitalcommons.unl.edu/greatplainsresearch/366 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Research: A Journal of Natural and Social Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Great Plains Research 8 (Spring 1998):39-56 © Copyright by the Center for Great Plains Studies THE GROUNDWATER RECHARGE FUNCTION OF SMALL WETLANDS IN THE SEMI-ARID NORTHERN PRAIRIES Garth van der Kamp National Hydrology Research Institute, Environment Canada 11 Innovation Boulevard, Saskatoon, SK Canada S7N 3H5 and Masaki Hayashi Department ofGeology and Geophysics, University of Calgary 2500 University Drive, Calgary, AB Canada T2N IN4 Abstract. Small wetlands in the semi-arid northern prairie region are focal pointsfor groundwater recharge. Hence the groundwater recharge function of the wetlands is an important consideration in development of wetland conservation policies.
    [Show full text]
  • Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water-Balance Model, 1996–2010
    Prepared in cooperation with the Minnesota Pollution Control Agency Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water-Balance Model, 1996–2010 Scientific Investigations Report 2015–5038 U.S. Department of the Interior U.S. Geological Survey Cover. Map showing mean annual potential recharge rates from 1996−2010 based on results from the Soil-Water-Balance model for Minnesota. Potential Groundwater Recharge for the State of Minnesota Using the Soil-Water- Balance Model, 1996–2010 By Erik A. Smith and Stephen M. Westenbroek Prepared in cooperation with the Minnesota Pollution Control Agency Scientific Investigations Report 2015–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Smith, E.A., and Westenbroek, S.M., 2015, Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996–2010: U.S.
    [Show full text]
  • 17 Major Drainage Basins
    HUC 8 HYDROLOGIC UNIT NAME CLINTON 04120101 Chautauqua-Conneaut FRANKLIN 04150409 CHAMPLAIN MASSENA FORT COVINGTON MOOERS ST LAWRENCE CLINTON 04120102 Cattaraugus BOMBAY WESTVILLE CONSTABLE CHATEAUGAY NYS Counties & BURKE LOUISVILLE 04120103 Buffalo-Eighteenmile BRASHER 04150308 CHAZY ALTONA ELLENBURG BANGOR WADDINGTON NORFOLK MOIRA 04120104 Niagara ESSEX MALONE DEC Regions JEFFERSON 6 04150307 BEEKMANTOWN MADRID 05010001 Upper Allegheny LAWRENCE BELLMONT STOCKHOLM DANNEMORA BRANDON DICKINSON PLATTSBURGH LEWIS OGDENSBURG CITY LISBON 05010002 Conewango 5 PLATTSBURGH CITY HAMILTON POTSDAM SCHUYLER FALLS SARANAC 05010004 French WARREN OSWEGATCHIE DUANE OSWEGO 04150306 PERU 04130001 Oak Orchard-Twelvemile CANTON PARISHVILLE ORLEANS WASHINGTON NIAGARA DE PEYSTER ONEIDA MORRISTOWN HOPKINTON WAVERLY PIERREPONT FRANKLIN 04140101 Irondequoit-Ninemile AUSABLE MONROE WAYNE BLACK BROOK FULTON SARATOGA DEKALB HERKIMER BRIGHTON GENESEE SANTA CLARA CHESTERFIELD 04140102 Salmon-Sandy ONONDAGA NYS Major 04150406 MACOMB 04150304 HAMMOND ONTARIO MADISON MONTGOMERY RUSSELL 04150102 Chaumont-Perch ERIE SENECA CAYUGA SCHENECTADY HERMON WILLSBORO ST ARMAND WILMINGTON JAY WYOMING GOUVERNEUR RENSSELAER ALEXANDRIA CLARE LIVINGSTON YATES 04130002 Upper Genesee OTSEGO ROSSIE COLTON CORTLAND ALBANY ORLEANS 04150301 04150404 SCHOHARIE ALEXANDRIA LEWIS 7 EDWARDS 04150408 CHENANGO FOWLER ESSEX 04130003 Lower Genesee 8 TOMPKINS CLAYTON SCHUYLER 9 4 THERESA 04150302 TUPPER LAKE HARRIETSTOWN NORTH ELBA CHAUTAUQUA CATTARAUGUS PIERCEFIELD 02050104 Tioga ALLEGANY STEUBEN
    [Show full text]
  • Pine Knot Mine Drainage Tunnel –
    QUANTITY AND QUALITY OF STREAM WATER DRAINING MINED AREAS OF THE UPPER SCHUYLKILL RIVER BASIN, SCHUYLKILL COUNTY, PENNSYLVANIA, USA, 2005-20071 Charles A. Cravotta III,2 and John M. Nantz Abstract: Hydrologic effects of abandoned anthracite mines were documented by continuous streamflow gaging coupled with synoptic streamflow and water- quality monitoring in headwater reaches and at the mouths of major tributaries in the upper Schuylkill River Basin, Pa., during 2005-2007. Hydrograph separation of the daily average streamflow for 10 streamflow-gaging stations was used to evaluate the annual streamflow characteristics for October 2005 through September 2006. Maps showing stream locations and areas underlain by underground mines were used to explain the differences in total annual runoff, base flow, and streamflow yields (streamflow/drainage area) for the gaged watersheds. For example, one stream that had the lowest yield (59.2 cm/yr) could have lost water to an underground mine that extended beneath the topographic watershed divide, whereas the neighboring stream that had the highest yield (97.3 cm/yr) gained that water as abandoned mine drainage (AMD). Although the stream-water chemistry and fish abundance were poor downstream of this site and others where AMD was a major source of streamflow, the neighboring stream that had diminished streamflow met relevant in-stream water-quality criteria and supported a diverse fish community. If streamflow losses could be reduced, natural streamflow and water quality could be maintained in the watersheds with lower than normal yields. Likewise, stream restoration could lead to decreases in discharges of AMD from underground mines, with potential for decreased metal loading and corresponding improvements in downstream conditions.
    [Show full text]
  • Umbrella Empr: Flood Control and Drainage
    I. COVERSHEET FOR ENVIRONMENTAL MITIGATION PLAN & REPORT (UMBRELLA EMPR: FLOOD CONTROL AND DRAINAGE) USAID MISSION SO # and Title: __________________________________ Title of IP Activity: __________________________________________________ IP Name: __ __________________________________________________ Funding Period: FY______ - FY______ Resource Levels (US$): ______________________ Report Prepared by: Name:__________________________ Date: ____________ Date of Previous EMPR: _________________ (if any) Status of Fulfilling Mitigation Measures and Monitoring: _____ Initial EMPR describing mitigation plan is attached (Yes or No). _____ Annual EMPR describing status of mitigation measures is established and attached (Yes or No). _____ Certain mitigation conditions could not be satisfied and remedial action has been provided within the EMPR (Yes or No). USAID Mission Clearance of EMPR: Contracting Officer’s Technical Representative:__________ Date: ______________ Mission Environmental Officer: _______________________ Date: ______________ ( ) Regional Environmental Advisor: _______________________ Date: ______________ ( ) List of CHF Haiti projects covered in this UEMPR (Flood Control and Drainage) 1 2 1. Background, Rationale and Outputs/Results Expected: According to Richard Haggerty’s country study on Haiti from 1989, in 1925, 60% of Haiti’s original forests covered the country. Since then, the population has cut down all but an estimated 2% of its original forest cover. The fact that many of Haiti’s hillsides have been deforested has caused several flooding problems for cities and other communities located in critical watershed and flood-plain areas during recent hurricane seasons. The 2008 hurricane season was particularly devastating for Haiti, where over 800 people were killed by four consecutive tropical storms or hurricanes (Fay, Gustav, Hanna, and Ike) which also destroyed infrastructure and caused severe crop losses. In 2004, tropical storm Jeanne killed an estimated 3,000 people, most in Gonaives.
    [Show full text]
  • Law, Land Use, and Groundwater Recharge
    Stanford Law Review Volume 73 May 2021 ARTICLE Law, Land Use, and Groundwater Recharge Dave Owen* Abstract. Groundwater is one of the world’s most important natural resources, and its importance will increase as climate change continues and the human population grows. But groundwater management has traditionally been governed by lax and uneven legal regimes. To the extent those regimes exist, they tend to focus on the extraction of groundwater rather than the processes—referred to as groundwater recharge—through which water enters the subsurface. Yet groundwater recharge is crucially important to the maintenance of groundwater supplies, and it is also highly susceptible to human influences, particularly through our pervasive manipulation of land uses. This Article discusses the underdeveloped law of groundwater recharge. It explains why groundwater-recharge law, or the lack thereof, is important; it discusses existing legal doctrines that affect groundwater recharge, occasionally by design but usually inadvertently; and it explains how more intentional and effective systems of groundwater-recharge law can be constructed. It also sets forth criteria for judging when regulation of groundwater recharge will make sense, and it argues that a communitarian ethic, rather than the currently prevalent laissez-faire approaches, should underpin those regulatory approaches. Finally, it suggests using regulatory fees as a key (but not exclusive) instrument of groundwater-recharge regulation. * Harry D. Sunderland Professor of Law, University of California, Hastings College of the Law. I thank Lauren Marshall, Schuyler Schwartz, and Michael Kelley for research assistance and Michael Kiparsky, Nell Green Nylen, Jim Salzman, and participants at the University of Arizona environmental law works-in-progress conference and the Rocky Mountain Mineral Law Foundation water law works-in-progress conference for helpful suggestions at early stages and comments on drafts, and the editors of the Stanford Law Review for excellent editorial assistance.
    [Show full text]
  • Artificial Recharge of Groundwater Page 1 of 9
    Artificial Recharge of Groundwater Page 1 of 9 Artificial Recharge of Groundwater by Nayantara Nanda Kumar & Niranjan Aiyagari Fall, 1997 Table of Contents The increasing demand for water has increased awareness towards the use of artificial recharge to augment ground water supplies. Stated simply, artificial recharge is a process by which excess surface water is directed into the ground - either by spreading on the surface, by using recharge wells, or by altering natural conditions to increase infiltration -to replenish an aquifer. It refers to the movement of water through man-made systems from the surface of the earth to underground water-bearing strata where it may be stored for future use. Artificial recharge (sometimes called planned recharge) is a way to store water underground in times of water surplus to meet demand in times of shortage (NRC, 1994) Table of Conterits '~ethods of Artificial Rechar~e EWLRONMENTAL QUALITY COUNCIL September 1 1, 2006 h ttp ://ewr.cee.vt.edu/environmental/teach/gwprimer/recharge/rharge .htrnl ~xh~blt20 Artificial Recharge of Groundwater Page 2 of 9 -Direct - --Artificial- --- Rechar~e aspreading basics This method involves surface spreading of water in basins that are excavated in the existing terrain. For effective artificial recharge highly permeable soils are suitable and maintenance of a layer of water over the highly permeable soils is necessary. When direct discharge is practiced the amount of water entering the aquifer depends on three factors - the infiltration rate, the percolation rate, and the capacity for horizontal water movement. In a homogenous aquifer the infiltration rate is equal to the percolation rate.
    [Show full text]