EFFECTS of CLIMATE CHANGE and PERTURBATION in BIOGEOCHEMICAL CYCLES on OXYGEN DISTRIBUTION and OCEAN ACIDIFICATION by TERESA

Total Page:16

File Type:pdf, Size:1020Kb

EFFECTS of CLIMATE CHANGE and PERTURBATION in BIOGEOCHEMICAL CYCLES on OXYGEN DISTRIBUTION and OCEAN ACIDIFICATION by TERESA EFFECTS OF CLIMATE CHANGE AND PERTURBATION IN BIOGEOCHEMICAL CYCLES ON OXYGEN DISTRIBUTION AND OCEAN ACIDIFICATION by TERESA MARIE BEATY-SYKES Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON DECEMBER 2014 Copyright © by Teresa Marie Beaty-Sykes 2014 All Rights Reserved ii Dedication I dedicate my dissertation work to the memory of my father, Gerald W Beaty, for all the guidance and support throughout my life. It was his unconditional love, support, and encouragement that empowered me to pursue my love of science. I grew up watching him work miracles in the back yard using science and engineering. He built planes, model aircraft, and cars; sometimes building the needed parts from scratch. He had many talents and many hobbies. One of my fondest childhood memories was building the 16-inch telescope, which I still have to this day. He was my real-life MacGyver and an inspiration. My father was an amazing man who could fix anything, build anything, and fly anything. I only hope that I can become half the person he was and everything he hoped I could be. iii Acknowledgements I would like to acknowledge all those who have worked on and with the HAMOCC model; the late Dr. Ernst Maier-Reimer, Dr. Christoph Heinze, and Dr. Virginia Palastanga. I would also like to thank Dr. Heinze for the use of his plotting program. This dissertation would not have been possible without the guidance and patience of my Ph.D advisor Dr. Arne Winguth who introduced me to high-performance computing and set me on my way in a world that was totally alien to me at the beginning of this adventure. I would also like to thank all of my committee members Dr. Hu, Dr. Sattler, Dr. Griffith, and Dr. Mydlarz for their time and guidance on this project. Finally, I would like to thank my family, my daughter Genesis, and everyone who stood beside me, pushed me, and put up with me while I worked toward this degree. Plotting was accomplished on NCAR computers, which are supported by the National Science Foundation. This research is supported by NSF grants EAR-0628336 and EAR 0745817 as well as NSF STEM support and UTA graduate dissertation fellowship. November 21, 2014 iv Abstract EFFECTS OF CLIMATE CHANGE AND PERTUBATION IN BIOGEOCHEMICAL CYCLES ON OXYGEN DISTRIBUTION AND OCEAN ACIDIFICATION Teresa Marie Beaty-Sykes, PhD The University of Texas at Arlington, 2014 Supervising Professor: Arne Winguth Dissolved oxygen (DO) concentration in the ocean is an important component of the marine biogeochemical cycles. In this study a global oceanic carbon cycle model (HAMOCC 2.0) was used to address how oxygen minimum zones (OMZ) respond to changes due to CO2 radiative forcing. Atmospheric pCO2 was increased at a rate of 1% annually and the model is stabilized at 2 X, 4 X, 6 X, and 8 X preindustrial pCO2 levels. With an increase in CO2 radiative forcing, the OMZ in the Pacific Ocean was controlled largely by changes in particulate organic carbon (POC) export. In contrast, the vertical expansion of the OMZs within the Atlantic and Indian Oceans were the result of changes to oxygen solubility. Changes in oxygen solubility also lead to the formation of a new OMZ in the western sub-tropical Pacific Ocean. The response of the pH value to a total carbon emission of 4480 PgC or 8 times preindustrial pCO2 was found to be comparable to the ocean acidification at the PETM (56 Ma). The HAMOCC 2.0 simulations indicate a significant relationship between the pH value and the DO concentration at intermediate depth. This can lead to stress for the marine ecosystem by further decreasing pH due to respiratory processes. Improved parameterization may enhance the predictability of regions with low DO concentrations and pH value. A 50% increase in atmospheric dust deposition did not significantly alter the regions of Fe limitation of export production and v hence did not resulted in significant changes in DO in the twilight zone and at intermediate depth. However, a 50% reduction in dust deposition significantly expanded the regions of Fe-limited export production thereby reducing the vertical particle flux of POC and the extent of the OMZs. This counteracted the OMZ expansion due to the increased CO2 radiative forcing. vi Table of Contents Acknowledgements ............................................................................................................ iv Abstract .............................................................................................................................. v List of Illistrations………………………………………………………………………………….x List of Tables ................................................................................................................... xvii Chapter 1 Introduction ....................................................................................................... 1 1.1 Climate change ........................................................................................................ 1 1.2 Biogeochemical cycles and dissolved oxygen distribution in the ocean .................. 5 1.2.1 Marine carbon cycle ......................................................................................... 5 1.2.2 Marine phosphorus cycle ................................................................................. 9 1.2.3 Dissolved ocean oxygen distribution .............................................................. 11 Chapter 2 Objectives ....................................................................................................... 13 2.1 Introduction ............................................................................................................ 13 2.2 Response of the oxygen minimum zone and pH value to CO2 radiative forcing ... 13 2.3 Reduced biology and atmospheric oxygen concentration experiments ................. 16 2.4 Fe fertilization experiments .................................................................................... 17 Chapter 3 HAMOCC 2.0 Model Description and Reference Simulation .......................... 21 3.1 Model description ................................................................................................... 21 3.2 The reference experiment ...................................................................................... 30 3.2.1 Initial and boundary conditions used .............................................................. 30 3.2.2 Reference run results and discussion ............................................................ 32 Chapter 4 Response of Export Production and Dissolved Oxygen Concentrations to pCO2 and Temperature Stabilization Scenarios .............................................................. 42 4.1 Introduction ............................................................................................................ 42 4.2 Experimental design .............................................................................................. 43 vii 4.3 Results ................................................................................................................... 45 4.3.1 Sensitivity of the dissolved oxygen distribution to reduced biological pump and atmospheric pO2 ...................................................................................................... 45 4.3.1.2 Sensitivity of dissolved oxygen to reduced atmospheric pO2 ...................... 46 4.3.2 Sensitivity of the oxygen minimum zone to CO2 radiative forcing .................. 47 4.3.2.4 Simulated OMZ formation in the western tropical Pacific Ocean in response to CO2 radiative forcing. .......................................................................................... 54 4.4 Discussion ............................................................................................................. 59 4.5 Conclusion and future research ............................................................................. 64 Chapter 5 Response of Ocean Acidification to Anthropogenic-Induced Carbon Emission ........................................................................................................................... 69 5.1 Introduction ............................................................................................................ 69 5.2 Experimental design .............................................................................................. 71 5.3 Results ................................................................................................................... 71 5.3.1 Sensitivity of ocean acidification to atmospheric carbon input. ...................... 71 5.3.2 Regression analyses of O2, total DIC, and pH. .............................................. 75 5.4 Discussion ............................................................................................................. 79 5.5 Conclusion and future research ............................................................................. 83 Chapter 6 Affects of Changes in Atmospheric Dust Deposition on Iron Fertilization and Dissolved Oxygen Concentration in the Ocean ............................................................... 86 6.1 Introduction ............................................................................................................ 86 6.2 Experimental design .............................................................................................. 87 6.3 Results ..................................................................................................................
Recommended publications
  • Observation of Elliptically Polarized Light from Total Internal Reflection in Bubbles
    Observation of elliptically polarized light from total internal reflection in bubbles Item Type Article Authors Miller, Sawyer; Ding, Yitian; Jiang, Linan; Tu, Xingzhou; Pau, Stanley Citation Miller, S., Ding, Y., Jiang, L. et al. Observation of elliptically polarized light from total internal reflection in bubbles. Sci Rep 10, 8725 (2020). https://doi.org/10.1038/s41598-020-65410-5 DOI 10.1038/s41598-020-65410-5 Publisher NATURE PUBLISHING GROUP Journal SCIENTIFIC REPORTS Rights Copyright © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License. Download date 29/09/2021 02:08:57 Item License https://creativecommons.org/licenses/by/4.0/ Version Final published version Link to Item http://hdl.handle.net/10150/641865 www.nature.com/scientificreports OPEN Observation of elliptically polarized light from total internal refection in bubbles Sawyer Miller1,2 ✉ , Yitian Ding1,2, Linan Jiang1, Xingzhou Tu1 & Stanley Pau1 ✉ Bubbles are ubiquitous in the natural environment, where diferent substances and phases of the same substance forms globules due to diferences in pressure and surface tension. Total internal refection occurs at the interface of a bubble, where light travels from the higher refractive index material outside a bubble to the lower index material inside a bubble at appropriate angles of incidence, which can lead to a phase shift in the refected light. Linearly polarized skylight can be converted to elliptically polarized light with efciency up to 53% by single scattering from the water-air interface. Total internal refection from air bubble in water is one of the few sources of elliptical polarization in the natural world.
    [Show full text]
  • Geochemical Characteristics of Late Ordovician Shales in the Upper Yangtze Platform, South China: Implications for Redox Environmental Evolution
    minerals Article Geochemical Characteristics of Late Ordovician Shales in the Upper Yangtze Platform, South China: Implications for Redox Environmental Evolution Donglin Lin 1,2,3, Shuheng Tang 1,2,3,*, Zhaodong Xi 1,2,3, Bing Zhang 1,2,3 and Yapei Ye 1,2,3 1 School of Energy Resource, China University of Geosciences, Beijing 100083, China; [email protected] (D.L.); [email protected] (Z.X.); [email protected] (B.Z.); [email protected] (Y.Y.) 2 Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education, Beijing 100083, China 3 Key Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-134-8882-1576 Abstract: Changes to the redox environment of seawater in the Late Ordovician affect the process of organic matter enrichment and biological evolution. However, the evolution of redox and its underlying causes remain unclear. This paper analyzed the vertical variability of main, trace elements and δ34Spy from a drill core section (well ZY5) in the Upper Yangtze Platform, and described the redox conditions, paleoproductivity and paleoclimate variability recorded in shale deposits of the P. pacificus zone and M. extraordinarius zone that accumulated during Wufeng Formation. The results showed that shale from well ZY5 in Late Ordovician was deposited under oxidized water environment, and Citation: Lin, D.; Tang, S.; Xi, Z.; Zhang, B.; Ye, Y. Geochemical there are more strongly reducing bottom water conditions of the M. extraordinarius zone compared Characteristics of Late Ordovician with the P.
    [Show full text]
  • Jocelyn A. Sessa
    Jocelyn A. Sessa Current: Assistant Curator of Invertebrate Paleontology, Academy of Natural Sciences, & Assistant Professor, Department of Biodiversity, Earth & Environmental Science of Drexel University. Past Positions: 2016 to 2017 Senior Scientist in Paleontology & Education, American Museum of Natural History. Postdoctoral Fellowships: 2012 to 2016 Departments of Paleontology & Education, American Museum of Natural History. 2010 to 2012 Department of Paleobiology, Smithsonian National Museum of Natural History. 2009 to 2010 Department of Earth Sciences, Syracuse University. Education: Ph.D., 2009 Department of Geosciences, Pennsylvania State University, University Park, PA. M.S., 2003 Department of Geology, University of Cincinnati, Cincinnati, Ohio. B.A., 2000 Department of Geological Sciences, State University of New York at Geneseo, Geneseo, NY. Cum laude, minor in Environmental Studies. Publications (* indicates student author; for student work, ‡ indicates corresponding author): Buczek, A.J.*, Hendy, A., Hopkins, M. Sessa, J.A.‡ 2020. On the reconciliation of biostratigraphy and strontium isotope stratigraphy of three southern Californian Plio-Pleistocene formations. Geological Society of America Bulletin 132 ; doi.org/10.1130/B35488.1. Oakes, R.L., Sessa, J.A. 2020. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 17:1975–1990; doi.org/10.5194/bg-17-1975-2020. Oakes, R.L., Hill Chase, M., Siddall, M.E., Sessa, J.A. 2020. Testing the impact of two key scan parameters on the quality and repeatability of measurements from CT scan data. Palaeontologia Electronica 23(1):a07; doi.org/10.26879/942. Ferguson, K.*, MacLeod, K.G.‡, Landman, N.H., Sessa, J.A.‡ 2019.
    [Show full text]
  • A Monte Carlo Ray Tracing Study of Polarized Light Propagation in Liquid Foams
    ARTICLE IN PRESS Journal of Quantitative Spectroscopy & Radiative Transfer 104 (2007) 277–287 www.elsevier.com/locate/jqsrt A Monte Carlo ray tracing study of polarized light propagation in liquid foams J.N. Swamya,Ã, Czarena Crofchecka, M. Pinar Mengu¨c- b,ÃÃ aDepartment of Biosystems and Agricultural Engineering, 128 C E Barnhart Building, University of Kentucky, Lexington, KY 40546, USA bDepartment of Mechanical Engineering, 269 Ralph G. Anderson Building, University of Kentucky, Lexington, KY 40506, USA Received 10 July 2006; accepted 28 July 2006 Abstract A Monte Carlo ray tracing scheme is used to investigate the propagation of an incident collimated beam of polarized light in liquid foams. Cellular structures like foam are expected to change the polarization characteristics due to multiple scattering events, where such changes can be used to monitor foam dynamics. A statistical model utilizing some of the recent developments in foam physics is coupled with a vector Monte Carlo scheme to compute the depolarization ratios via Stokes–Mueller formalism. For the simulations, the incident Stokes vector corresponding to horizontal linear polarization and right circular polarization are considered. It is observed that bubble size and the polydispersity parameter have a significant effect on the depolarization ratios. This is partially owing to the number of total internal reflection events in the Plateau borders. The results are discussed in terms of applicability of polarized light as a diagnostic tool for monitoring foams. r 2006 Elsevier Ltd. All rights reserved. Keywords: Polarized light scattering; Liquid foams; Bubble size; Polydispersity; Foam characterization; Foam diagnostics; Cellular structures 1. Introduction Liquid foams are random packing of bubbles in a small amount of immiscible liquid [1] and can be found in a wide variety of applications.
    [Show full text]
  • The Synergistic Effect of Focused Ultrasound and Biophotonics to Overcome the Barrier of Light Transmittance in Biological Tissue
    Photodiagnosis and Photodynamic Therapy 33 (2021) 102173 Contents lists available at ScienceDirect Photodiagnosis and Photodynamic Therapy journal homepage: www.elsevier.com/locate/pdpdt The synergistic effect of focused ultrasound and biophotonics to overcome the barrier of light transmittance in biological tissue Jaehyuk Kim a,b, Jaewoo Shin c, Chanho Kong c, Sung-Ho Lee a, Won Seok Chang c, Seung Hee Han a,d,* a Molecular Imaging, Princess Margaret Cancer Centre, Toronto, ON, Canada b Health and Medical Equipment, Samsung Electronics Co. Ltd., Suwon, Republic of Korea c Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea d Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada ARTICLE INFO ABSTRACT Keywords: Optical technology is a tool to diagnose and treat human diseases. Shallow penetration depth caused by the high Light transmission enhancement optical scattering nature of biological tissues is a significantobstacle to utilizing light in the biomedical field. In Focused Ultrasound this paper, light transmission enhancement in the rat brain induced by focused ultrasound (FUS) was observed Air bubble and the cause of observed enhancement was analyzed. Both air bubbles and mechanical deformation generated Mechanical deformation by FUS were cited as the cause. The Monte Carlo simulation was performed to investigate effects on transmission Rat brain by air bubbles and finiteelement method was also used to describe mechanical deformation induced by motions of acoustic particles. As a result, it was found that the mechanical deformation was more suitable to describe the transmission change according to the FUS pulse observed in the experiment. 1.
    [Show full text]
  • Ocean Storage
    277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained
    [Show full text]
  • Bubble-Mania the Bubbling Clues to Magma Viscosity and Eruptions
    Earthlearningidea - http://www.earthlearningidea.com/ Bubble-mania The bubbling clues to magma viscosity and eruptions Pour a viscous liquid (eg. honey, syrup) into Honey and a one transparent container and a pale-coloured soft drink – ready for soft drink (eg. ginger beer) or just coloured bubble-mania. water into another. Put both of these onto a plastic tray or table. Ask your pupils to use a drinking straw to blow bubbles into the soft Apparatus photo: drink, then ask them to ‘use the same blow’ to Chris King blow bubbles in the more viscous liquid. When nothing happens, ask them to blow harder until the liquid ‘erupts’. Ask: • How were the ‘eruptions’ different? • How were the bubbles different? • What caused the differences? • Some volcanoes have magmas that are Magma fountain ‘runny’ (like the soft drink) and some have within the crater much more viscous magmas (like the other of Volcan liquid) – how might these volcanoes erupt Villarrica, Pucón, differently? Chile. • Which sort of eruption would you most like to This file is see – one with low viscosity (runny) magma, licensed by Jonathan Lewis like the soft drink, or one with high viscosity under the Creative (thick) magma like the viscous liquid? Commons Attribution-Share Alike 2.0 Generic license. ……………………………………………………………………………………………………………………………… The back up Title: Bubble-mania • How were the ‘eruptions’ different? It was easy to blow bubbles into the soft drink Subtitle: The bubbling clues to magma viscosity and it ‘fizzed’ a bit, but the bubbles soon and eruptions disappeared; it was much harder to blow bubbles into the viscous liquid and they grew Topic: A simple test of the viscosity of two similar- large and sometimes burst out of the container looking liquids, linked to volcanic eruption style.
    [Show full text]
  • Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
    Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion.
    [Show full text]
  • The Life of a Surface Bubble
    molecules Review The Life of a Surface Bubble Jonas Miguet 1,†, Florence Rouyer 2,† and Emmanuelle Rio 3,*,† 1 TIPS C.P.165/67, Université Libre de Bruxelles, Av. F. Roosevelt 50, 1050 Brussels, Belgium; [email protected] 2 Laboratoire Navier, Université Gustave Eiffel, Ecole des Ponts, CNRS, 77454 Marne-la-Vallée, France; fl[email protected] 3 Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay, France * Correspondence: [email protected]; Tel.: +33-1691-569-60 † These authors contributed equally to this work. Abstract: Surface bubbles are present in many industrial processes and in nature, as well as in carbon- ated beverages. They have motivated many theoretical, numerical and experimental works. This paper presents the current knowledge on the physics of surface bubbles lifetime and shows the diversity of mechanisms at play that depend on the properties of the bath, the interfaces and the ambient air. In particular, we explore the role of drainage and evaporation on film thinning. We highlight the existence of two different scenarios depending on whether the cap film ruptures at large or small thickness compared to the thickness at which van der Waals interaction come in to play. Keywords: bubble; film; drainage; evaporation; lifetime 1. Introduction Bubbles have attracted much attention in the past for several reasons. First, their ephemeral Citation: Miguet, J.; Rouyer, F.; nature commonly awakes children’s interest and amusement. Their visual appeal has raised Rio, E. The Life of a Surface Bubble. interest in painting [1], in graphism [2] or in living art.
    [Show full text]
  • Study on Bubble Cavitation in Liquids for Bubbles Arranged in a Columnar Bubble Group
    applied sciences Article Study on Bubble Cavitation in Liquids for Bubbles Arranged in a Columnar Bubble Group Peng-li Zhang 1,2 and Shu-yu Lin 1,* 1 Institute of Applied Acoustics, Shaanxi Normal University, Xi’an 710062, China; [email protected] 2 College of Science, Xi’an University of Science and Technology, Xi’an 710054, China * Correspondence: [email protected]; Tel.: +86-181-9273-7031 Received: 24 October 2019; Accepted: 29 November 2019; Published: 4 December 2019 Featured Application: This work will provide a reference for further simulations and help to promote the theoretical study of ultrasonic cavitation bubbles. Abstract: In liquids, bubbles usually exist in the form of bubble groups. Due to their interaction with other bubbles, the resonance frequency of bubbles decreases. In this paper, the resonance frequency of bubbles in a columnar bubble group is obtained by linear simplification of the bubbles’ dynamic equation. The correction coefficient between the resonance frequency of the bubbles in the columnar bubble group and the Minnaert frequency of a single bubble is given. The results show that the resonance frequency of bubbles in the bubble group is affected by many parameters such as the initial radius of bubbles, the number of bubbles in the bubble group, and the distance between bubbles. The initial radius of the bubbles and the distance between bubbles are found to have more significant influence on the resonance frequency of the bubbles. When the distance between bubbles increases to 20 times the bubbles’ initial radius, the coupling effect between bubbles can be ignored, and after that the bubbles’ resonance frequency in the bubble group tends to the resonance frequency of a single bubble’s resonance frequency.
    [Show full text]
  • Persistent Global Marine Euxinia in the Early Silurian ✉ Richard G
    ARTICLE https://doi.org/10.1038/s41467-020-15400-y OPEN Persistent global marine euxinia in the early Silurian ✉ Richard G. Stockey 1 , Devon B. Cole 2, Noah J. Planavsky3, David K. Loydell 4,Jiří Frýda5 & Erik A. Sperling1 The second pulse of the Late Ordovician mass extinction occurred around the Hirnantian- Rhuddanian boundary (~444 Ma) and has been correlated with expanded marine anoxia lasting into the earliest Silurian. Characterization of the Hirnantian ocean anoxic event has focused on the onset of anoxia, with global reconstructions based on carbonate δ238U 1234567890():,; modeling. However, there have been limited attempts to quantify uncertainty in metal isotope mass balance approaches. Here, we probabilistically evaluate coupled metal isotopes and sedimentary archives to increase constraint. We present iron speciation, metal concentration, δ98Mo and δ238U measurements of Rhuddanian black shales from the Murzuq Basin, Libya. We evaluate these data (and published carbonate δ238U data) with a coupled stochastic mass balance model. Combined statistical analysis of metal isotopes and sedimentary sinks provides uncertainty-bounded constraints on the intensity of Hirnantian-Rhuddanian euxinia. This work extends the duration of anoxia to >3 Myrs – notably longer than well-studied Mesozoic ocean anoxic events. 1 Stanford University, Department of Geological Sciences, Stanford, CA 94305, USA. 2 School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. 3 Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA. 4 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, UK. 5 Faculty of Environmental Sciences, Czech University of Life Sciences ✉ Prague, Prague, Czech Republic.
    [Show full text]
  • Coincidence of Photic Zone Euxinia and Impoverishment of Arthropods
    www.nature.com/scientificreports OPEN Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian- Famennian biotic crisis Krzysztof Broda1*, Leszek Marynowski2, Michał Rakociński1 & Michał Zatoń1 The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the frst time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to fux of the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions. 1 Euxinic conditions in aquatic environments are defned as the presence of H2S and absence of oxygen . If such conditions occur at the chemocline in the water column, where light is available, they are defned as photic zone euxinia (PZE).
    [Show full text]