Geo-Information Science and Remote Sensing Thesis Report GIRS-2018

Total Page:16

File Type:pdf, Size:1020Kb

Geo-Information Science and Remote Sensing Thesis Report GIRS-2018 Geo-information Science and Remote Sensing Thesis Report GIRS-2018-29 Analysis of the spatial conditions and its context- dependent sensitivity for a vertical farm’s location decision The municipality of Amsterdam as a case study Sven Ruigrok 01-07-2018 i Analysis of the spatial conditions and its context- dependent sensitivity for a vertical farm’s location decision The municipality of Amsterdam as a case study Sven Ruigrok 920213714030 Supervisor: dr. ir. Ron van Lammeren A thesis submitted in partial fulfilment of the degree of Master of Science at Wageningen University and Research Centre, The Netherlands. 01-07-2018 Utrecht, The Netherlands Thesis code number: GRS-80436 Thesis Report: GIRS-2018 -29 Wageningen University and Research Centre Msc Urban Environmental Management (MUE) Laboratory of Geo-Information Science and Remote Sensing ii Foreword This thesis is executed as part of the master program Urban Environment Management (MUE) at the Wageningen University and Research. As a track within my studies I chose geo-information science, part of the GIRS chair group in Wageningen. During my studies of MUE at the Wageningen University I specialised in food and agriculture in the urban context. This thesis is an attempt to combine the work fields of urban sustainability, food provisioning and geo-information science. For the work I spend the first half of the thesis work venturing into the field of vertical farming, and the second part of it was focused on taking the findings to the field of geo-information science. I want to thank Ron van Lammeren as my supervisor and for letting me discuss all aspects of the thesis including the things outside of the domain of geo-information science. I also want to thank John Stuiver for providing insights into the use of different methods to come to a result for my case and for validating my approach on it. Furthermore, I want to thank the interviewees that were willing to talk with me about the concept of vertical farming and the spatial aspects it might hold. Their input has proven to be essential for the analysis. I hope my research can contribute to the debate around vertical farming and can provide insights into the importance of spatial conditions for a vertical farm’s location decision. Hopefully, it is both an interesting read for those familiar with geo-information science as well as those more affiliated with vertical farming. iii Abstract The rise in urban population and increasing stress on agricultural land in combination with the advancement in technology of indoor farming have sparked the idea of producing food in urban areas in vertical farms. Decision making of vertical farm location is done without a proper consideration of spatial conditions that influences its success. Research on the location, or spatial characteristics of vertical farming is virtually absent. This study is the first endeavour of a location analysis for vertical farming. A literature and interview analysis are performed to examine criteria that are of importance. Twelve criteria were found that are valid in Amsterdam, The Netherlands, and are used as an input for a spatial GIS (Geographical Information System) based Multi-Criteria Analysis (MCA). Five scenarios that can motivate decision-makers were formulated. The MCA led to suitability maps for vertical farming according to the scenarios. Vacant buildings and lots are used exemplary to demonstrate how the suitability maps can help in guiding the decision-making process. The scenarios show how different approaches to vertical farming can lead to a different suitability and decision of a vertical farm’s location. Improved understanding of the impact of spatial criteria is achieved and the use of these criteria gives valuable insight into the context-dependent suitability of vertical farms. Applying the same strategy to another study area needs careful re-assessment of the criteria there and their overall validity. Results are affected by the availability and quality of the (spatial) data. iv Contents 1 Introduction ______________________________________________________________ 1 1.1 General background __________________________________________________________ 1 1.2 The emergence of vertical farming ______________________________________________ 1 1.3 Problem definition ___________________________________________________________ 2 1.5 Reading guide _______________________________________________________________ 2 2 Criteria Analysis ___________________________________________________________ 3 1.4 Research objectives __________________________________________________________ 3 2.1 Review motive ______________________________________________________________ 4 2.1.1 Vertical farming definition ___________________________________________________________ 4 2.2 Criteria analysis – Methodology ________________________________________________ 6 2.2.1 The identification of stakeholders _____________________________________________________ 6 2.2.2 Interviews ________________________________________________________________________ 6 2.3 The case of Amsterdam _______________________________________________________ 6 2.4 Criteria analysis – Review ______________________________________________________ 7 2.4.1 The crop __________________________________________________________________________ 8 2.4.2 Logistics _________________________________________________________________________ 10 2.4.3 Circularity ________________________________________________________________________ 11 2.4.4 Labour __________________________________________________________________________ 15 2.4.5 Consuming market ________________________________________________________________ 15 2.4.6 Social embedding__________________________________________________________________ 16 2.4.7 Political parties ___________________________________________________________________ 17 2.4.8 Rental prices _____________________________________________________________________ 17 2.5 Criteria analysis - Conclusions _________________________________________________ 18 3 Location analysis _________________________________________________________ 19 3.1 Review location analysis _____________________________________________________ 19 3.1.1 MCA for spatial-temporal decision making _____________________________________________ 19 3.1.2 Soft and hard criteria _______________________________________________________________ 20 3.2 Methodology – pre-processing ________________________________________________ 20 3.2.1 Software package for the analysis ____________________________________________________ 21 3.2.2 Data collection ____________________________________________________________________ 21 3.2.3 Data transformation _______________________________________________________________ 22 3.2.4 Standardisation of criteria ___________________________________________________________ 22 3.3 Data pre-processing _________________________________________________________ 23 3.3.1 Circularity ________________________________________________________________________ 23 3.3.2 Logistics _________________________________________________________________________ 26 3.3.3 Economic ________________________________________________________________________ 32 3.3.4 Social ___________________________________________________________________________ 34 v 3.4 Methodology – Processing ____________________________________________________ 36 3.4.1 Analytical Hierarchy Process _________________________________________________________ 36 3.4.2 Scenario application _______________________________________________________________ 37 3.4.3 Weighing of the individual criteria ____________________________________________________ 37 3.4.4 Standardisation of the suitability outcome. _____________________________________________ 39 3.4.5 Suitability per district ______________________________________________________________ 39 3.4.6 Method assumptions _______________________________________________________________ 39 3.4.7 Location selection, qualification and its production capability. _____________________________ 40 3.5 Results – Suitability of vertical farming in Amsterdam ______________________________ 42 3.5.1 Suitability of Amsterdam ____________________________________________________________ 42 3.5.2 Vacant buildings and lots ___________________________________________________________ 43 3.5.3 Best locations for a vertical farm _____________________________________________________ 44 3.5.4 How many people can be fed? _______________________________________________________ 44 3.5.5 Suitability per district ______________________________________________________________ 46 3.5.6 Solitary businesses and clusters ______________________________________________________ 47 3.5.7 Bajes Kwartier a good pilot location? __________________________________________________ 49 4 Scenario analysis _________________________________________________________ 50 4.1 Sensitivity of the model ______________________________________________________ 50 4.2 Methodology – Scenario Analysis ______________________________________________ 50 4.2.1 The weight distribution in the scenarios _______________________________________________ 50 4.2.2 Comparing the number of suitable locations ____________________________________________ 51 4.3 Results ____________________________________________________________________ 51 4.3.1 Consistent scoring areas ____________________________________________________________ 53 4.3.2 Suitable areas compared ____________________________________________________________
Recommended publications
  • Innovation Can Accelerate the Transition Towards a Sustainable Food System
    This is a repository copy of Innovation can accelerate the transition towards a sustainable food system. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/163942/ Version: Supplemental Material Article: Herrero, M, Thornton, PK, Mason-D’Croz, D et al. (45 more authors) (2020) Innovation can accelerate the transition towards a sustainable food system. Nature Food, 1 (5). pp. 266- 272. ISSN 2662-1355 https://doi.org/10.1038/s43016-020-0074-1 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Innovation can accelerate the transition towards a sustainable food system. Mario Herrero1*, Philip K. Thornton2, Daniel Mason-D’Croz1, Jeda Palmer1, Tim G. Benton3, Benjamin L. Bodirsky4, Jessica Bogard1, Andrew Hall1, Bernice Lee3, Karine Nyborg5, Prajal Pradhan4, Graham Bonnett1, Brett A. Bryan6, Bruce M. Campbell2,7, Svend Christensen7, Michael Clark8, Mat Cook1, Imke J.M. de Boer9, Chris Downs1, Kanar Dizyee1, Christian Folberth10, Cecile Godde1, James Gerber11, Michael Grundy1, Petr Havlik10, Andrew Jarvis2,12, Richard King3, Ana Maria Loboguerrero2,12, Mauricio A.
    [Show full text]
  • Arstannualconference October 20, 1979
    PROCEEDINGS ARSTANNUALCONFERENCE HYDROPONICS: The Soilless Alternative GOODMAN HALL JACK LONDON SQUARE OAKLAND, CALIFORNIA OCTOBER 20, 1979 SPONSORED BY HYDROPONIC SOCIETY OF AMERICA . P.O. BOX 516 BRENTWOOD, CALIFORNIA 94513 Hobby Science Agriculture FOREWORD Hydroponics, the art and science of growing plants without soil, is a fascinating concept for many people. It stirs the imagination to realize that plants are not totally dependent upon soil for their growth and well being. Sharing information about Hydroponics led to the formation of the Hydroponics Society of America and the main aim of the society is to supply factual information about hydroponics to everyone interested in the soilless growth of plants. Providing a forum for a well balanced evaluation of the hydroponic process is also the goal of the· organization. The by­ laws of the organization are included in the appendex and they contain a more extensive discription of the societies goals and aims. The society thanks the speakers for providing their papers so that they could be printed early and distributed the day·of the symposium_. Special thanks are also due to George and Mary Downey and Virgil Allison for their special efforts on behalf of the society, and to the other members of the Board of Trustees for their financial and moral support. BUILDING THE BRIDGE FOR HIM W. A. Dromgoole An old man, traveling a lone highway, Came at the evening cold and gray, To a chasm deep and wide. The old man crossed in the twilight dim For the sullen stream held no fears for him But he turned when he reached the other side, And builded a bridge to span the tide.
    [Show full text]
  • Current Trends in Agronomy (2012-13)
    Current Trends in Agronomy (2012-13) Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur-176062 (India) Current Trends in Agronomy SS Rana Sr Scientist Department of Agronomy, Forages and Grassland Management, COA, CSK HPKV, Palampur-176062 SYLLABUS AGRON 601 3+0 Objective To acquaint the students about recent advances in agricultural production Theory UNIT I Agro-physiological basis of variation in yield, recent advances in soil plant-water relationship UNIT II Globalization of agriculture and WTO, precision agriculture, contract farming, organic farming, marketing and export potential of organic products, certification, labeling and accreditation procedures UNIT III Crop residue management in multiple cropping systems; latest developments in plant management, weed management, cropping systems, grassland management, agro- forestry, allelopathy UNIT IV GIS, GPS and remote sensing for crop management, global warming, GM crops, seed production technology; seed certification, seed multiplication, hybrid seed production, etc. UNIT V Concepts of system approach in agriculture; holistic approach of farming systems, dryland farming, sustainable agriculture and research methodology in Agronomy Suggested Readings Agarwal RL. 1995. Seed Technology . Oxford & IBH. Dahiya BS & Rai KN. 1997. Seed Technology . Kalyani Publishers. Govardhan V. 2000. Remote Sensing and Water Management in Command Areas: Agroecological Prospectives . IBDC. ICAR. 2006. Hand Book of Agriculture . ICAR, New Delhi. Narasaiah
    [Show full text]
  • BDUL.SAAIMS of EDUCATION on GANDHIAN THOUGHT * PROF.NIMMA.VENKATA RAO **GANTA SUMAN Abstract: This Paper Discusses About the Aims of Education on Gandhi an Thought
    INTERNATIONAL JOURNAL OF EDUCATIONAL ASPECTS, MANAGEMENT STUDIES AND APPLIED SCIENCES VOLUME - 1 ISSUE - 1 / 2 FRB - APRIL ’2012 “IJEAMSAS” ISSN : 2320-0383 BDUL.SAAIMS OF EDUCATION ON GANDHIAN THOUGHT * PROF.NIMMA.VENKATA RAO **GANTA SUMAN Abstract: This paper discusses about the Aims of education on Gandhi an thought. Education certainly is a means to all-round progress of man. In other words, the pathway to human- development goes through the lanes of education. Moreover, true education is the sole basis of achieving ones purpose in life. It is education, which can as the real difficulty is that people have no idea of what education truly is. We assess the value of education in the same manner as we assess the value of land or of shares in the stock- exchange market. We want to provide only such education as would enable the student to earn more. We hardly give any thought to the improvement of the character of the educated. The girls, we say, do not have to earn; so why should they be educated? As long as such ideas persist there is no hope of our ever knowing the true value of education. But although much good and useful work can be done without knowledge of the three R’s, it is my firm belief that we cannot always do without such knowledge. It develops and sharpens one’s intellect, and it increases our capacity of doing well. I have never placed an unnecessarily high value on the knowledge of the three R’s. I am only attempting to assign its proper place to it.
    [Show full text]
  • Newrappresentazioni Carretto-1 2 Copia
    RICH AIRED SERRA (RAS) RICH AIRED SERRA (RAS) RICH AIRED SERRA Rich Aired Serra Substrate as a concept, Substrate as a praxis | Aestetics micro-device for a Hydroculture contextual micro-environment Rich Aired Serra (RAS) is a sculptural support for gardenig. _Types: Aero Aquaponics Aquascaping Hydroponics passive Ispired to a Jimmie Durham sculpture and Richard Serra art's “Substrate definition: The surface or material on or from which an organism lives, grows, or _Subtypes: Aquatic garden Bottle garden Deep water culture principles, the RAS is not a static sculpture. At first it is a obtains its nourishment (Oxford Dictionary)” Ebb and flow Fogponics Microponics Nutrient film technique semi-mobile device, second, it is for a variegated types of Organic hydroponics Organopónicos Sub-irrigated planter gardening or different uses. The basic structure is for sustain Substratum definition: _Substrates: Charcoal Coco peat Diatomaceous earth horizontal or vertical Substrates for greening. It could to be 1. Something that is spread or laid under something else; a stratum or layer lying under another. Expanded clay Gravel Growstones Lava rock Mineral wool used in a domestic enrvironment or in open air urban spaces. 2. Something that underlies or serves as a basis or foundation. Perlite Pumice Rice hulls Sand Vermiculite Wood fibre The concept desing of Supports and Substrates (structure 3. Agriculture. the subsoil. _Accessories: Grow light Hydroponic dosers Irrigation and infrastructure) is the rappresentation of relationship 4. Biology. the base or material on which a nonmotile organism lives or grows. sprinkler Leaf sensor Net-pot Spray nozzle Timers Ultrasonic between organism and environment as conditions for life.
    [Show full text]
  • Cornelia Gull
    Study of Pythium root diseases of hydroponically grown crops, with emphasis on lettuce by Cornelia Gull Submitted to the Faculty of Natural and Agricultural Sciences Department of Microbiology and Plant Pathology lTNIVERSITY OF PRETORIA In partial fulfillment of the requirements for the degree of MSc(Agric) UNIVERSITY OF PRETORIA PRETORIA OCTOBER 2002 ACKNOWLEDGEMENTS I wish to sincerely thank the following individuals and institutions who made this study possible: Dr. N. Labuschagne, my supervisor, for his interest, guidance and support throughout this study. Prof. F.e. Wehner, my co-supervisor, for his valuable advice and contribution in the writing of my thesis. The University of Pretoria, National Research Foundation, Hydrotech, Harvest Fresh, BTC Products and Services and SIDL Prasin for financial support Hydrotech, and especially John Meijer, for his help and technical support and for providing a commercial hydroponicum in which to conduct the experiments. Dr. W.J. Botha for the identification work and sharing his knowledge of the study area. Marie Smith for statistical analysis of the data. My fellow-students, Andries Fourie, Fanie Verwey, Roger Bagnall and Wilma Havenga, who were always keen to lend a helping hand. My friends for their interest and encouragement. My parents for all their love and unwavering support throughout my long career as a student. I dedicate this thesis to them. The Lord, without Whom nothing is possible. CONTENTS PAGE CHAPTER 1: GENERAL INTRODUCTION 1 References 4 CHAPTER 2: PYTHIUM SPECIES ASSOCIATED
    [Show full text]
  • Modern Trends in Agronomy
    MODERN TRENDS IN AGRONOMY By Dr. A. Ramachandran Assistant Professor, Department of Agronomy, Mother Terasa College of Agriculture, Mettusalai, Illuppur (Po), Pudukkottai - 622102. Tamil Nadu, India E-mail : [email protected] Dr. M. Mohana Keerthi Assistant Professor, Department of Agronomy Mother Terasa College of Agriculture, Mettusalai, Illuppur (Po), Pudukkottai - 622102. Tamil Nadu, India E-mail : [email protected] 2019 Ideal International E – PublicationPvt. Ltd. www.isca.co.in 427, Palhar Nagar, RAPTC, VIP-Road, Indore-452005 (MP) INDIA Phone: +91-731-2616100, Mobile: +91-80570-83382 E-mail: [email protected], Website:www.isca.co.in Title: MODERN TRENDS IN AGRONOMY Author(s): Dr. A. Ramachandran, Dr. M. Mohana Keerthi Edition: First Volume: I © Copyright Reserved 2019 All rights reserved. No part of this publication may be reproduced, stored, in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, reordering or otherwise, without the prior permission of the publisher. ISBN: 978-93-86675-86-6 MODERN TRENDS IN AGRONOMY iii Preface The field of agricultural science in general and agronomy in particular has achieved many milestones worldwide in 21st century. Our country is no exception in development of crop production science keeping in pace with technological developments in other branches of science. There is continuous change in technology i.e. from local varieties to high yielding varieties, hybrids and genetically modified crops and varieties; simple fertilizers to complex fertilizers and nano fertilizers; mono cropping to cropping system and farming system approach etc. There are many discussions on conservation agriculture, organic farming, sustainable development, climate change, etc in these days.
    [Show full text]
  • Scaling up Or Selling Out? a Critical Appraisal of Current Developments in Vertical Farming
    Scaling Up or Selling Out? A Critical Appraisal of Current Developments in Vertical Farming by Austin Miller A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Arts in Political Economy Carleton University Ottawa, Ontario © 2011, Austin Miller Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-94663-3 Our file Notre reference ISBN: 978-0-494-94663-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Complete Guide for Growing Plants Hydroponically Completeguide Forgrowing Plants Hydroponically Growing Plants
    AGRICULTURE Jr. Jones, Complete Guide for Complete Guide for Growing Plants Hydroponically Hydroponically Plants Growing for Guide Complete Growing Plants With the continued implementation of new equipment and new concepts and methods, such Hydroponically as hydroponics and soilless practices, crop growth has improved and become more effcient. Focusing on the basic principles and practical growth requirements, the Complete Guide for Growing Plants Hydroponically offers valuable information for the commercial grower, the researcher, the hobbyist, and the student interested in hydroponics. It provides details on methods of growing that are applicable to a range of environmental growing systems. The author begins with an introduction that covers the past, present, and future of hydroponics. He also describes the basic concepts behind how plants grow, followed by several chapters that present in-depth practical details for hydroponic growing systems: • The essential plant nutrient elements • The nutrient solution • Rooting media • Systems of hydroponic culture • Hydroponic application factors These chapters cover the nutritional requirements of plants and how to best prepare and use nutrient solutions to satisfy plant requirements with different growing systems and rooting media under a variety of conditions. The book gives many nutrient solution formulas and discusses the advantages and disadvantages of various hydroponic systems. It also contains a chapter that describes a school project, which students can follow to generate nutrient element defciency symptoms and monitor their effects on plant growth. K13563 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 711 Third Avenue New York, NY 10017 an informa business 2 Park Square, Milton Park www.crcpress.com Abingdon, Oxon OX14 4RN, UK www.crcpress.com J.
    [Show full text]
  • Hydroponics in Vegetable Crops
    The Pharma Innovation Journal 2021; 10(6): 629-634 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 Hydroponics in vegetable crops: A review TPI 2021; 10(6): 629-634 © 2021 TPI www.thepharmajournal.com Aurosikha Swain, Subhrajyoti Chatterjee, M Viswanath, Anindita Roy Received: 12-04-2021 Accepted: 20-05-2021 and Amit Biswas Aurosikha Swain M.Sc. Student, Department of Abstract Horticulture, M S Swaminathan In the present situation, India needs food security which entails that each and every people must have School of Agriculture (MSSSOA), physical and economic access to safe and nutritious food to meet dietary needs. Scarcity of usable water Centurion University of for agriculture leads to production of lesser production of food which ultimately leads to hunger and Technology and Management malnutrition of a large number of people in our country. So, there is an utmost need for adoption of such (CUTM), Paralakhemundi, technology in agriculture that can contribute towards water saving and have a positive impact on food Gajapati, Odisha, India production and availability. ‘Hydroponics’ is one such methodology of soilless cultivation and water use Subhrajyoti Chatterjee efficiency of this of this is much more than conventional system. Currently hydroponics cultivation is Assistant Professor, Department of gaining popularity all over the world because of its management of resources in a very efficient way and Horticulture, M S Swaminathan production of quality foods. Several benefits of this technique include less growing time of crops than School of Agriculture (MSSSOA), conventional crop growing in soil, round the year production, minimum disease and pest infestation and Centurion University of elimination of several intercultural operations like weeding, spraying, watering etc.
    [Show full text]
  • LESSON 1 INTRODUCTION to HYDROPONICS LESSON AIM Discuss the Nature and Scope of Hydroponics Systems. INTRODUCTION to HYDROPONIC
    LESSON 1 INTRODUCTION to HYDROPONICS LESSON AIM Discuss the nature and scope of hydroponics systems. INTRODUCTION TO HYDROPONICS Hydroponics is the process used to grow plants without soil and literally means ‘working water’. The grower is taking ‘control’ of the plant's root environment, and losing the benefit of ‘mother nature's’ finely-tuned mechanisms which normally control that part of the plant's environment. Hydroponics is not an easier way to grow plants! It is a more controlled way of growing plants! Growing in hydroponics can offer the following advantages: - It can reduce the physical work involved in growing. - It can reduce the amount of water used in growing. - It can save on space...more can be grown in the same area. There are six basic types of hydroponic systems: • Wick • Water Culture • Ebb and Flow (or flood and drain system) • Drip (with either a recovery or non-recovery process) • N.F.T. (Nutrient Film Technique) • Aeroponic Over time the basic models have evolved and resulted in hundreds of different variations. *The wick system is passive, with no moving parts, and is also the simplest type of hydroponic system. The nutrient solution is drawn into the growing medium from the reservoir with a wick. The grower using this system can use a variety of growing media such as perlite, vermiculite or coconut fibre. However large plants tend to draw and use the nutrient water at a faster rate than the wick can supply it. *The water culture system is the simplest active system to use. A styrofoam platform floating on the nutrient solution holds the plants.
    [Show full text]