On Graph Thickness, Geometric Thickness, and Separator Theorems

Total Page:16

File Type:pdf, Size:1020Kb

On Graph Thickness, Geometric Thickness, and Separator Theorems CCCG 2009, Vancouver, BC, August 17{19, 2009 On Graph Thickness, Geometric Thickness, and Separator Theorems Christian A. Duncan∗ Abstract fined to be the smallest number of forests whose union is G [25, 26, 27]. In other words, the minimum number We investigate the relationship between geometric of edge colors such that the subgraph induced by each thickness and the thickness, outerthickness, and ar- color is a forest of trees. In linear arboricity the result- boricity of graphs. In particular, we prove that all ing colored subgraphs must be collections of paths [2, 3]. graphs with arboricity two or outerthickness two have In outerthickness, the resulting colored subgraphs must geometric thickness O(log n). The technique used can be outerplanar graphs [16, 17]. Outerplanar graphs are be extended to other classes of graphs so long as a stan- analogous to graphs with book thickness one; however, dard separator theorem exists. For example, we can outerthickness and book thickness are not identical. apply it to show the known boundp that thickness two Another way to look at the problem is to divide the graphs have geometric thickness O( n), yielding a sim- edges of the graphs into different layers and draw the ple construction in the process. layers independently as planar graphs such that the ver- tex positions are identical in each layer. In this case, 1 Introduction the problem is to minimize the number of layers. A common related application of this problem is in VLSI In many applications of graph visualization and graph design where wires are placed in various layers to avoid theory, it is often useful to draw the edges of a graph crossings, see for example [1]. Minimizing the number with multiple colors or in multiple layers. The gen- of layers reduces cost and improves performance of the eral class of thickness problems deals with determining created circuits. the minimum number of these colors needed under vari- Another related problem is the area of simultaneous ous conditions. Traditionally, the (graph) thickness of a embeddings. In simultaneous embedding problems, the graph G is defined to be the minimal number of planar edges are already assigned to various layers, and one subgraphs whose union forms G. From an edge coloring must determine a placement of vertices to realize each perspective, we can also define the thickness to be the drawing without crossings, if possible [9]. smallest number of edge colors needed so that we can draw the graph in the plane with no intersections be- 1.1 Related Work tween two edges having the same color. In this variant, the only constraint on how a graph's edges are drawn Our work is motivated by and related to recent results is continuity. Essentially, the thickness of a graph is in characterizing the geometric thickness of graphs. In a minimum edge coloring of the graph such that each particular, Eppstein [14] characterizes a class of graphs color represents a planar graph. Initially, the notion of having arboricity three and thickness three, for which thickness derived from early work on biplanar graphs, the geometric thickness grows as a function of n, the graphs with thickness two [18, 20, 28]. Generalized by number of vertices. The proof relies on Ramsey theory Tutte [29], the research in graph thickness problems is and so the lower bound on the geometric thickness is too rich to summarize here. The interested reader is a very slow growing function of n. Eppstein [13] also referred to the survey by Mutzel et al. [24]. characterizes a class of graphs with arboricity two and By adding the constraint that all edges must be rep- geometric thickness two having a book thickness that resented by straight-line segments, we arrive at the ge- grows as another slow function of n. ometric thickness problem [10, 21]. If we further con- Using results on the simultaneous embedding of two strain the problem such that the vertices must lie in con- paths [9], Duncan et al. [12] proved that graphs with vex position, the edge coloring number is known as the linear arboricity two have geometric thickness two. book thickness [8]. Although the values of graph, geo- Arboricity-two graphs are not as simple. Geyer et metric, and book thickness are related, there are graphs al. [15] show two trees which cannot be embedded si- that have different values for each [13, 14]. multaneously. In the context of geometric thickness, We can also constrain the graph thickness in other this would imply that one cannot simply take a graph ways. For example, the arboricity of a graph G is de- of arboricity two, decompose it into two forests arbi- ∗Department of Computer Science, Louisiana Tech University, trarily, and then embed the two graphs simultaneously. Ruston, LA 71270, USA, [email protected] However, because the union of the two trees described 21st Canadian Conference on Computational Geometry, 2009 does have geometric thickness two, it is still in fact open that states for any graph G 2 G with n = jV (G)j > c, as to whether arboricity two implies geometric thickness there exists a cut set C such that G1;G2 2 G and jVij ≤ two. f(n) for i = 1; 2 and jCj ≤ g(n). Our primary result In [23], Malitz characterizesp the book thickness of uses the following key lemma: graphs with E edges to be O( E). This result imme- Lemma 1 Let G be a graph in G with n vertices. There diately impliesp that thickness-t graphs have geometric thickness O( tn). There has also been work on charac- exists an assignment of colors to e 2 E(G) in the range terizing the geometric thickness of a graph in terms of 1 to F(n), and unique x-coordinate values to v 2 V (G), its degree. In particular, graphs with degree less than in the range 1 to n, such that for any assignment of y- two trivially have geometric thickness one, graphs with coordinates to v, with all vertex points being in general degree three and four have geometric thickness two [12], position, no two edges with the same color assignment intersect, except at common endpoints, when drawn as and there exist graphsp with degree δ ≥ 9 having geomet- ric thickness at least c δn1=2−4/δ− for sufficiently large straight-line segments from their respective endpoints. n and constants c and > 0 [7]. Here F(n) is defined by the following recurrence rela- Dujmovi´cand Wood [11] discuss the relationship be- tion: tween geometric thickness and graph treewidth. In par- c if n ≤ c F(n) = ticular, they show that graphs with treewidth k have ge- F(f(n)) + g(n) otherwise. ometric thickness at most dk=2e. This is complementary to our work as even planar graphs can have arbitrarily Proof. In our arguments, we shall also color each ver- large treewidth. For example, the n × n grid graph has tex as c(v) so that an edge e = (u; v) 2 E(G) has color treewidth n. However, the treewidth is known for many either c(u) or c(v). types of graphs. We prove this lemma inductively. If n ≤ c, we simply (arbitrarily) assign the vertices v 2 V (G) with increas- 1.2 Our Results ing x-coordinates from 1 to n and the colors c(v) as 1 to n. We then assign each edge (u; v) 2 G with u; v 2 V (G) In this paper, we provide further analysis into the re- as color c(u), the choice of u or v is arbitrary. This pro- lationship between geometric thickness and thickness. cess requires the assignment of at most c colors. Since In particular, we show that graphs with arboricity two edges with similar colors also share a common endpoint, and outerthickness two have a geometric thickness of the only color crossings possible are between adjacent O(log n). We show these by providing a more gen- edges but if the points are in general position, the only eralized solution for graphs that can be decomposed intersection is at the endpoints. Therefore, our lemma into two subgraphs having some separation property. holds for the base case. This allows for further relations between the two thick- Assume now that the lemma holds for all graphs with ness measures. For example, we can also show that size less than n. Let G have size n. Since G belongs to graphsp with thickness two have a geometric thickness of the class G with the separator property, we can partition O( n), which is also immediately implied by the results V (G) into the three sets V1, V2, C. Let n1 = jV1j, from [23]. Additionally, if the graph can be decomposed n2 = jV2j, nc = jCj. into two Kh-minor free graphs, then the graph has ge- We then compute color and x-coordinate assignments 3=2p ometric thickness O(h n). separately for G1 and G2. From our inductive assump- tion, both G1 and G2 can be assigned values indepen- 2 Using a Separator Theorem dently without any invalid crossings in their respective graphs. A cut set for a graph G = (V; E) is a set of vertices To combine the two assignments and provide assign- C ⊂ V (G) such that the subgraph of G induced by ments for the remaining vertices and edges, we proceed the removal of the vertices in C consists of at least two as follows. Let V1 have x-coordinate assignments rang- connected components G1 and G2. Note, if the cut set ing from 1 to n1 and V2 have x-coordinate assignments produces more than two connected components, we can ranging from 1 to n2.
Recommended publications
  • A Note on Simultaneous Embedding of Planar Graphs (Abstract)∗
    EWCG 2005, Eindhoven, March 9–11, 2005 A Note on Simultaneous Embedding of Planar Graphs (Abstract)∗ Emilio Di Giacomo† Giuseppe Liotta† 1 Introduction 2 Preliminaries Let G1 and G2 be a pair of planar graphs such that The algorithms to compute a simultaneous embedding V (G1)=V (G2)=V .Asimultaneous embedding [6] of a pair of planar graphs and of a pair of trees pre- Ψ=(Γ1, Γ2)ofG1 and G2 is a pair of crossing-free sented in [6] are an elegant combination of the tech- drawings Γ1 and Γ2 of G1 and G2, respectively, such nique by Kaufmann and Wiese [7] for point-set em- ∈ that for every vertex v V we have Γ1(v)=Γ2(v). bedding and of the simultaneous embedding strategy ∈ ∩ If every edge e E(G1) E(G2) is represented with for two paths by Brass et al. [2]. In this section, we the same simple open Jordan curve both in Γ1 and in first recall the main ideas of Erten and Kobourov for Γ we say that Ψ is a simultaneous embedding with 2 simultaneous embedding of two planar graphs G1 and fixed edges. If the edges of G and G are repre- 1 2 G2 and then make a couple of observations on how to sented with straight-line segments in Γ1 and Γ2 we combine these ideas with known literature in order to say that Ψ is a simultaneous geometric embedding. extend some of the results in [6]. The existence of simultaneous geometric embeddings Suppose first that both G1 and G2 are Hamilto- for pairs of paths, cycles, and caterpillars is shown nian.
    [Show full text]
  • Linear K-Arboricities on Trees
    Discrete Applied Mathematics 103 (2000) 281–287 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Note Linear k-arboricities on trees Gerard J. Changa; 1, Bor-Liang Chenb, Hung-Lin Fua, Kuo-Ching Huangc; ∗;2 aDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan bDepartment of Business Administration, National Taichung Institue of Commerce, Taichung 404, Taiwan cDepartment of Applied Mathematics, Providence University, Shalu 433, Taichung, Taiwan Received 31 October 1997; revised 15 November 1999; accepted 22 November 1999 Abstract For a ÿxed positive integer k, the linear k-arboricity lak (G) of a graph G is the minimum number ‘ such that the edge set E(G) can be partitioned into ‘ disjoint sets and that each induces a subgraph whose components are paths of lengths at most k. This paper studies linear k-arboricity from an algorithmic point of view. In particular, we present a linear-time algo- rithm to determine whether a tree T has lak (T)6m. ? 2000 Elsevier Science B.V. All rights reserved. Keywords: Linear forest; Linear k-forest; Linear arboricity; Linear k-arboricity; Tree; Leaf; Penultimate vertex; Algorithm; NP-complete 1. Introduction All graphs in this paper are simple, i.e., ÿnite, undirected, loopless, and without multiple edges. A linear k-forest is a graph whose components are paths of length at most k.Alinear k-forest partition of G is a partition of the edge set E(G) into linear k-forests. The linear k-arboricity of G, denoted by lak (G), is the minimum size of a linear k-forest partition of G.
    [Show full text]
  • Graph Drawing  Dagstuhl Seminar 
    05191 Abstracts Collection Graph Drawing Dagstuhl Seminar Michael Jünger1, Stephen Kobourov2 and Petra Mutzel3 1 Univ. of Köln, DE 2 Univ. of Arizona, US [email protected] 3 Univ. of Dortmund, DE [email protected] Abstract. From 08.05. to 13.05.05, the Dagstuhl Seminar 05191 Graph Drawing was held in the International Conference and Research Cen- ter (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The rst section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available. Keywords. Graph Drawing, Visualization, Layout Algorithms, Inter- active Visualization 05191 Executive Summary Graph Drawing This paper summarizes the topics, aims, and achievements of the Dagstuhl Sem- inar 05191 on Graph Drawing. Keywords: Graph drawing Joint work of: Jünger, Michael; Kobourov, Stephen; Mutzel, Petra Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/342 05191 Open Problem Session Report This is a report on an informal session intended to stimulate communication and sharing of problems. Hence the attributions and citations may contain inaccu- racies, and are certainly not complete. Keywords: Open problems, graph drawing Joint work of: Whitesides, Sue Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/338 Dagstuhl Seminar Proceedings 05191 Graph Drawing http://drops.dagstuhl.de/opus/volltexte/2006/348 2 M. Jünger, S. Kobourov and P. Mutzel Matrix Zoom: A Visual Interface to Semi-external Graphs James Abello (Rutgers Univ.
    [Show full text]
  • Orienting Fully Dynamic Graphs with Worst-Case Time Bounds⋆
    Orienting Fully Dynamic Graphs with Worst-Case Time Bounds? Tsvi Kopelowitz1??, Robert Krauthgamer2 ???, Ely Porat3, and Shay Solomon4y 1 University of Michigan, [email protected] 2 Weizmann Institute of Science, [email protected] 3 Bar-Ilan University, [email protected] 4 Weizmann Institute of Science, [email protected] Abstract. In edge orientations, the goal is usually to orient (direct) the edges of an undirected network (modeled by a graph) such that all out- degrees are bounded. When the network is fully dynamic, i.e., admits edge insertions and deletions, we wish to maintain such an orientation while keeping a tab on the update time. Low out-degree orientations turned out to be a surprisingly useful tool for managing networks. Brodal and Fagerberg (1999) initiated the study of the edge orientation problem in terms of the graph's arboricity, which is very natural in this context. Their solution achieves a constant out-degree and a logarithmic amortized update time for all graphs with constant arboricity, which include all planar and excluded-minor graphs. It remained an open ques- tion { first proposed by Brodal and Fagerberg, later by Erickson and others { to obtain similar bounds with worst-case update time. We address this 15 year old question by providing a simple algorithm with worst-case bounds that nearly match the previous amortized bounds. Our algorithm is based on a new approach of maintaining a combina- torial invariant, and achieves a logarithmic out-degree with logarithmic worst-case update times. This result has applications to various dynamic network problems such as maintaining a maximal matching, where we obtain logarithmic worst-case update time compared to a similar amor- tized update time of Neiman and Solomon (2013).
    [Show full text]
  • Faster Sublinear Approximation of the Number of K-Cliques in Low-Arboricity Graphs
    Faster sublinear approximation of the number of k-cliques in low-arboricity graphs Talya Eden ✯ Dana Ron ❸ C. Seshadhri ❹ Abstract science [10, 49, 40, 58, 7], with a wide variety of applica- Given query access to an undirected graph G, we consider tions [37, 13, 53, 18, 44, 8, 6, 31, 54, 38, 27, 57, 30, 39]. the problem of computing a (1 ε)-approximation of the This problem has seen a resurgence of interest because number of k-cliques in G. The± standard query model for general graphs allows for degree queries, neighbor queries, of its importance in analyzing massive real-world graphs and pair queries. Let n be the number of vertices, m be (like social networks and biological networks). There the number of edges, and nk be the number of k-cliques. are a number of clever algorithms for exactly counting Previous work by Eden, Ron and Seshadhri (STOC 2018) ∗ n mk/2 k-cliques using matrix multiplications [49, 26] or combi- gives an O ( 1 + )-time algorithm for this problem n /k nk k natorial methods [58]. However, the complexity of these (we use O∗( ) to suppress poly(log n, 1/ε,kk) dependencies). algorithms grows with mΘ(k), where m is the number of · Moreover, this bound is nearly optimal when the expression edges in the graph. is sublinear in the size of the graph. Our motivation is to circumvent this lower bound, by A line of recent work has considered this question parameterizing the complexity in terms of graph arboricity. from a sublinear approximation perspective [20, 24].
    [Show full text]
  • The 4-Girth-Thickness of the Complete Graph
    Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 14 (2018) 319–327 The 4-girth-thickness of the complete graph Christian Rubio-Montiel UMI LAFMIA 3175 CNRS at CINVESTAV-IPN, 07300, Mexico City, Mexico Division´ de Matematicas´ e Ingenier´ıa, FES Ac-UNAM, 53150, Naulcalpan, Mexico Received 10 March 2017, accepted 21 June 2017, published online 19 September 2017 Abstract In this paper, we define the 4-girth-thickness θ(4;G) of a graph G as the minimum number of planar subgraphs of girth at least 4 whose union is G. We prove that the 4- girth-thickness of an arbitrary complete graph K , θ(4;K ), is n+2 for n = 6; 10 and n n 4 6 θ(4;K6) = 3. Keywords: Thickness, planar decomposition, girth, complete graph. Math. Subj. Class.: 05C10 1 Introduction A finite graph G is planar if it can be embedded in the plane without any two of its edges g crossing. A planar graph of order n and girth g has size at most g 2 (n 2) (see [6]), and an acyclic graph of order n has size at most n 1, in this case,− we define− its girth as . The thickness θ(G) of a graph G is the minimum− number of planar subgraphs whose union1 is G; i.e. the minimum number of planar subgraphs into which the edges of G can be partitioned. The thickness was introduced by Tutte [11] in 1963. Since then, exact results have been obtained when G is a complete graph [1,3,4], a complete multipartite graph [5, 12, 13] or a hypercube [9].
    [Show full text]
  • On Star and Caterpillar Arboricity
    Discrete Mathematics 309 (2009) 3694–3702 www.elsevier.com/locate/disc On star and caterpillar arboricity Daniel Gonc¸alvesa,∗, Pascal Ochemb a LIRMM UMR 5506, CNRS, Universite´ Montpelier 2, 161 rue Ada, 34392 Montpellier Cedex 5, France b LRI UMR 8623, CNRS, Universite´ Paris-Sud, Batˆ 490, 91405 Orsay Cedex, France Received 31 October 2005; accepted 18 January 2008 Available online 10 March 2008 Abstract We give new bounds on the star arboricity and the caterpillar arboricity of planar graphs with given girth. One of them answers an open problem of Gyarf´ as´ and West: there exist planar graphs with track number 4. We also provide new NP-complete problems. c 2008 Elsevier B.V. All rights reserved. Keywords: NP-completeness; Partitioning problems; Edge coloring 1. Introduction Many graph parameters in the literature are defined as the minimum size of a partition of the edges of the graph such that each part induces a graph of a given class C. The most common is the chromatic index χ 0.G/, in this case C is the class of graphs with maximum degree one. Vizing [18] proved that χ 0.G/ either equals ∆.G/ or ∆.G/ C 1, where ∆.G/ denotes the maximum degree of G. Deciding whether χ 0.G/ D 3 is shown to be NP-complete for general graphs in [13]. The arboricity a.G/ is another well studied parameter, for which C is the class of forests. In [15], Nash-Williams proved that: jE.H/j a.G/ D max (1) H⊆G jV .H/j − 1 with the maximum being over all the subgraphs H D .E.H/; V .H// of G.
    [Show full text]
  • [Cs.CG] 9 Sep 2002 ⋆⋆ Uhpors a Enmd;Se[,3 O Noeve.O H Ot P Imple More the Heuristic Effectiveness
    On Simultaneous Graph Embedding C. A. Duncan1, A. Efrat∗2, C. Erten∗2, S. G. Kobourov⋆2, and J. S. B. Mitchell⋆⋆3 1 Dept. of Computer Science, Univ. of Miami, [email protected] 2 Dept. of Computer Science, Univ. of Arizona, {alon,erten,kobourov}@cs.arizona.edu 3 Dept. of Applied Mathematics and Statistics, Stony Brook University, [email protected] Abstract. We consider the problem of simultaneous embedding of pla- nar graphs. There are two variants of this problem, one in which the mapping between the vertices of the two graphs is given and another where the mapping is not given. In particular, we show that without mapping, any number of outerplanar graphs can be embedded simulta- neously on an O(n) × O(n) grid, and an outerplanar and general planar graph can be embedded simultaneously on an O(n2) × O(n3) grid. If the mapping is given, we show how to embed two paths on an n × n grid, or two caterpillar graphs on an O(n2) × O(n3) grid. 1 Introduction The areas of graph drawing and information visualization have seen significant growth in recent years. Often the visualization problems involve taking infor- mation in the form of graphs and displaying them in a manner that both is aesthetically pleasing and conveys some meaning. The aesthetic criteria by itself are the topic of much debate and research, but some generally accepted and tested standards include preferences for straight-line edges or those with only a few bends, a limited number of crossings, good separation of vertices and edges, as well as a small overall area.
    [Show full text]
  • The Book Thickness of a Graph There Are Several Geometric
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMBINATORIAL THEORY, Series B 27, 320-331 (1979) The Book Thickness of a Graph FRANK BERNHART* Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada AND PAUL C. KAINEN+ Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio Communicated by the Editors Received July 19, 1975 The book thickness bt(G) of a graph G is defined, its basic properties are delineated, and relations are given with other invariants such as thickness, genus, and chromatic number. A graph G has book thickness bt(G) < 2 if and only if it is a subgraph of a hamiltonian planar graph, but we conjecture that there are planar graphs with arbitrarily high book thickness. 1. INTRODUCTION There are several geometric invariants which have been studied extensively for graphs-among them, genus and thickness. In this paper we introduce a new invariant defined by considering embeddings of graphs into the members of what seems to us to be a very natural class of objects. For n >, 0, an n-book, or a book with n pages, consists of a line L in 3- space (called the spine) together with n distinct half-planes (called pages) with L as their common boundary. We usually adopt the convention that L is the z axis (in the standard parameterization of euclidean 3-space) and so is oriented “up” and “down.” An n-book embedding is a topological embedding /3 of G in an n-book which carries each vertex into the spine and each edge into the interior of at most one page.
    [Show full text]
  • Graph Treewidth and Geometric Thickness Parameters
    Graph Treewidth and Geometric Thickness Parameters Vida Dujmovi´c 1? and David R. Wood 2?? 1 School of Computer Science, Carleton University, Ottawa, Canada ([email protected]) 2 Departament de Matem`atica Aplicada II, Universitat Polit`ecnicade Catalunya, Barcelona, Spain ([email protected]) Abstract. Consider a drawing of a graph G in the plane such that cross- ing edges are coloured differently. The minimum number of colours, taken over all drawings of G, is the classical graph parameter thickness θ(G). By restricting the edges to be straight, we obtain the geometric thick- ness θ(G). By further restricting the vertices to be in convex position, we obtain the book thickness bt(G). This paper studies the relationship between these parameters and the treewidth of G. Let θ(Tk)/ θ(Tk) / bt(Tk) denote the maximum thickness / geometric thickness / book thickness of a graph with treewidth at most k. We prove that: – θ(Tk) = θ(Tk) = dk/2e, and – bt(Tk) = k for k ≤ 2, and bt(Tk) = k + 1 for k ≥ 3. The first result says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. The second result disproves the conjecture of Ganley and Heath [Discrete Appl. Math. 2001] that bt(Tk) = k for all k. Analogous results are proved for outerthickness, arboricity, and star-arboricity. 1 Introduction Partitions of the edge set of a graph G into a small number of ‘nice’ subgraphs is in the mainstream of graph theory. For example, in a proper edge colouring, the subgraphs of the partition are matchings.
    [Show full text]
  • Geometric Simultaneous Embeddings of a Graph and a Matching Sergio Cabello 1 Marc Van Kreveld 2 Giuseppe Liotta 3 Henk Meijer 4 Bettina Speckmann 5 Kevin Verbeek 5
    Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 15, no. 1, pp. 79–96 (2011) Geometric Simultaneous Embeddings of a Graph and a Matching Sergio Cabello 1 Marc van Kreveld 2 Giuseppe Liotta 3 Henk Meijer 4 Bettina Speckmann 5 Kevin Verbeek 5 1Faculty of Mathematics and Physics, University of Ljubljana, Slovenia 2Department of Information and Computing Sciences, Utrecht University, The Netherlands 3Dipartimento di Ingegneria Elettronica e dell’Informazione, Universit`adi Perugia, Italy 4Roosevelt Academy, Middelburg, The Netherlands 5Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands Abstract The geometric simultaneous embedding problem asks whether two pla- nar graphs on the same set of vertices in the plane can be drawn using straight lines, such that each graph is plane. Geometric simultaneous em- bedding is a current topic in graph drawing and positive and negative results are known for various classes of graphs. So far only connected graphs have been considered. In this paper we present the first results for the setting where one of the graphs is a matching. In particular, we show that there exist a planar graph and a matching which do not admit a geometric simultaneous embedding. This strength- ens an analogous negative result for a planar graph and a path. On the positive side, we describe algorithms that compute a geometric simulta- neous embedding of a matching and a wheel, outerpath, or tree. Our drawing algorithms minimize the number of orientations used to draw the edges of the matching. Specifically, when embedding a matching and a tree, we can draw all matching edges horizontally.
    [Show full text]
  • Planar Graphs, Biplanar Graphs and Graph Thickness
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 12-2016 PLANAR GRAPHS, BIPLANAR GRAPHS AND GRAPH THICKNESS Sean M. Hearon California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Hearon, Sean M., "PLANAR GRAPHS, BIPLANAR GRAPHS AND GRAPH THICKNESS" (2016). Electronic Theses, Projects, and Dissertations. 427. https://scholarworks.lib.csusb.edu/etd/427 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Planar Graphs, Biplanar Graphs and Graph Thickness A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Sean Michael Hearon December 2016 Planar Graphs, Biplanar Graphs and Graph Thickness A Thesis Presented to the Faculty of California State University, San Bernardino by Sean Michael Hearon December 2016 Approved by: Dr. Jeremy Aikin, Committee Chair Date Dr. Cory Johnson, Committee Member Dr. Rolland Trapp, Committee Member Dr. Charles Stanton, Chair, Dr. Cory Dunn Department of Mathematics Graduate Coordinator, Department of Mathematics iii Abstract A graph is planar if it can be drawn on a piece of paper such that no two edges cross. The smallest complete and complete bipartite graphs that are not planar are K5 and K3;3.
    [Show full text]