Profile of Bob B. Buchanan PROFILE

Total Page:16

File Type:pdf, Size:1020Kb

Profile of Bob B. Buchanan PROFILE PROFILE Profile of Bob B. Buchanan PROFILE Paul Gabrielsen, Science Writer On a clear June day in 1975, Bob Buchanan and two anaerobic fermentation pro- Oslo colleagues pulled up water samples from a lake cesses responsible for their in Norway, examining the microorganisms growing at beverages. Another friend at various depths. “When we got to 6 meters,” Buchanan Duke was Melinda Speas, a recalls, “there was a band of Chlorobium growing,” graduate student in zoology. referring to a genus of green bacteria (now called Their friendship was later Chlorobaculum) that belongs to a unique class of or- rekindled in California and they ganisms called photolithotrophs. These bacteria re- married in 1965. quire sunlight for photosynthesis but obtain cellular After earning his doctorate reductants from sulfur compounds rather than water. in 1962, Buchanan secured a The bacteria buck the traditional chemical pathways postdoctoral fellowship at the for energy production and carbon fixation and instead University of California, Berkeley, use pathways discovered by Buchanan, a member of where he would spend the next the National Academy of Sciences and emeritus pro- 55 years. He hoped to work fessor at the University of California, Berkeley. with renowned microbiologist H. A. Barker, but because From Appalachia to the Laboratory Barker was on sabbatical leave Buchanan was born in 1937 in Richmond, Virginia. at the time, Buchanan instead Fearing for the family’s safety during World War II, joined the group of Barker’s Buchanan’s mother took him and his two older sisters former student, Jesse Rabinowitz. to a family farm in Southwest Virginia, near the Ap- Buchanan and Rabinowitz crys- Bob B. Buchanan. Image courtesy of Bob B. palachian town of Glade Spring, while his father tallized the recently discov- Buchanan. remained in Richmond to work. Farm life shaped ered ferredoxin protein from Buchanan’s early years. He cared for pet lambs as a child Clostridium species (2). Watch- and put himself through college by growing beans and ing the protein crystals grow, Buchanan says, was milking cows. “By hand!” he says. “almost like witnessing the birth of a child.” The pub- Buchanan attended nearby Emory and Henry Col- lication resulting from their work remains his most highly lege, where he took a bacteriology class from zoolo- cited paper. Working on ferredoxin set the course for gist Lee T. Douglas. Under Douglas’ mentorship, Buchanan’s research career. “One can trace the thread Buchanan’s interest in microorganisms blossomed. “I from then to today,” he says. remember seeing a culture of Bacillus subtilis, a bac- terium that can grow with or without oxygen, stained Ferredoxin with crystal violet under a simple microscope,” By the time Buchanan completed his postdoctoral Buchanan says. “The cells were so brilliant; that’s what fellowship in 1963, researchers knew that ferredoxin, I wanted to work with.” He was fascinated by the discovered the year before (3), carried highly ener- concept of life without oxygen. getic electrons and participated in fundamental bi- ological processes (4, 5). At the time, biologists knew From Duke to Berkeley of one process by which aerobic organisms produced Buchanan moved to Duke University in 1958 for his energy: the Krebs or citric acid cycle. Working with graduate work. He studied Actinomyces,facultative Daniel Arnon, an expert in photosynthesis, and post- anaerobes known to infect cattle and humans (1). doctoral scholar Michael Evans, Buchanan set out to Buchanan characterized a new species collected from determine whether the energetic electrons carried by an infected human tear duct. The highly infectious iso- ferredoxin could reverse the cycle. late, named Actinomyces propinicus, differed from “Textbooks said the cycle was irreversible,” known species in cell wall composition and in the for- Buchanan says, “but it turned out that ferredoxin mation of propionic acid as a fermentation product. It could do the job.” In the citric acid cycle, glucose was later reclassified into the genus Proprionibacterium. breaks down into pyruvate, which, in turn, breaks While at Duke, Buchanan and his friends in the down into acetyl-CoA and carbon dioxide. Buchanan humanities departments frequented a beer cellar in and his colleagues had earlier reversed the reaction, Chapel Hill, North Carolina, where he explained the combining acetyl-CoA, carbon dioxide, and reduced www.pnas.org/cgi/doi/10.1073/pnas.1714970114 PNAS Early Edition | 1of3 Downloaded by guest on September 28, 2021 ferredoxin to generate pyruvate (6). They further re- 1990s, Buchanan asked whether thioredoxin partici- versed another reaction, the breakdown of α-keto- pated in plant functions outside the chloroplast. He fo- glutarate. With the participation of ferredoxin and cused on the process of seed germination. “Seeds and three enzymes, the citric acid cycle could be fully re- redox had never gotten together before but since I had versed (7), fixing carbon dioxide and synthesizing never really studied plants formally, I could ask simple acetyl-CoA and pyruvate. The team recognized the questions, which may be an advantage,” he says. role of such a cycle in anaerobic environments, such as Buchanan considered the redox state of dried seed the rumen of cattle or the depths of a lake, where it proteins. When quiescent, he supposed, seed proteins would enable organisms to synthesize amino acids would be in a stable oxidized state. Exposing seeds to from organic acids and carbon dioxide. The cycle, now water would reduce the seed proteins, breaking them called the Arnon–Buchanan cycle (8), was found in down to serve as nutrients in germination. In collabo- Chlorobium, the bacterium that Buchanan would later ration with graduate student Tom Johnson and visiting sample in a Norwegian lake. scientist Karoly Kobrehel, Buchanan found that reduced Buchanan’s cycle immediately encountered con- thioredoxin served as a redox signal to promote protein troversy, however, challenging the assertion of his solubilization and activate enzymes functional in ger- Berkeley colleague, Melvin Calvin, that all carbon di- mination (14). oxide was fixed through the Calvin–Benson cycle. Thioredoxin has since been found to regulate en- Acceptance of the Arnon–Buchanan cycle took about zymes throughout biology in bacterial and animal a quarter century (9) and “only then did it appear in cells alike (15). As a cellular signal, thioredoxin has textbooks,” Buchanan says. also found practical application. Overexpression of Since that time, the Arnon–Buchanan cycle has been thioredoxin in barley accelerates germination by found in various extreme environments, such as deep about a day (16). “That doesn’t sound impressive ocean hydrothermal vents. (10) “This cycle has taken unless you’re in the malt business,” Buchanan says. directions I never thought possible,” Buchanan says. Thioredoxins can also mitigate allergens in wheat (17) and may play a role in cancer and Parkinson’s Thioredoxin and Chloroplasts disease research. “In cancer, thioredoxin is the bad Hoping to find more evidence for carbon fixation via guy because it encourages cell division,” he says. the Arnon–Buchanan cycle, Buchanan then turned his “In Parkinson’s, it’sthegoodguybecauseyou attention to the role of ferredoxin in chloroplasts, the want revitalization.” photosynthetic centers of plant cells. Using acetyl- Most recently, Buchanan and colleague Peggy CoA as a reaction substrate with ferredoxin yielded Lemaux have collaborated with a group at McGill Uni- no results. His group then added sugar phosphates as versity in Montreal to study the role of redox regulation substrates and found that fructose 1,6-bisphosphate on the genetic activity of barley. The team identified a increased the uptake of carbon dioxide by chloro- gene (TLP8) that influenced malting quality (18). The plast enzymes in the presence of reduced ferredoxin protein produced by the gene binds to β-glucan poly- and ATP. Tracing the chemical path of fructose uti- saccharides, which are insoluble, and assists the filtering lization, Buchanan found that the enzyme fructose process in beer production. The researchers found that 1,6-bisphosphatase was central to this increase and differential expression of the gene in different barley that the enzyme was activated by reduced ferre- varieties affected β-glucan binding, as did the redox doxin. (11) “There was no indication that this or any state of the protein. other enzyme could be regulated in this manner,” Despite his work on plant and grain biochemistry, he says. Buchanan does not keep a garden or brew his own Part of this discovery was fortuitous. Buchanan had beer. “And I grew up on a farm!” he says. “I’membar- added a small amount of magnesium to the reaction, rassed to say that. I really enjoy what I do too much to which turned out to be a cofactor for the fructose 1,6- dilute my time.” bisphosphatase enzyme in chloroplasts (12). “Had I In 1999, Buchanan was at home and noticed some used a saturated concentration of magnesium,” he difficulty moving his right-side limbs. He went to the says, “we would have missed it.” Buchanan’s findings hospital and learned he was having a stroke that were published in 1967. Ten years later, with post- progressed until he lost almost all mobility on his right doctoral scholars Peter Schürmann and Ricardo side. He says that change in diet and adopting an Wolosiuk, Buchanan found that ferredoxin’spart- exercise regimen, which includes regular swimming, ner in regulating photosynthetic enzyme activity are to thank for his recovery. After years of physical (13) is a protein called thioredoxin. Ferredoxin re- therapy, he regained much of his mobility. duced by light can reduce thioredoxin via an en- Buchanan and his wife have established awards to zyme Buchanan named ferredoxin–thioredoxin reductase. encourage scientific enthusiasm and excellence. At The reduced thioredoxin activates enzymes of the chlo- Wake Forest University, his wife’s alma mater, an roplast, which are deactivated by a different mechanism award honors her father, William E.
Recommended publications
  • A Dicarboxylate/4-Hydroxybutyrate Autotrophic Carbon Assimilation Cycle in the Hyperthermophilic Archaeum Ignicoccus Hospitalis
    A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis Harald Huber*†, Martin Gallenberger*, Ulrike Jahn*, Eva Eylert‡, Ivan A. Berg§, Daniel Kockelkorn§, Wolfgang Eisenreich‡, and Georg Fuchs§ *Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany; ‡Lehrstuhl fu¨r Biochemie, Department Chemie, Technische Universita¨t Mu¨ nchen, Lichtenbergstrasse 4, D-85748 Garching, Germany; and §Lehrstuhl fu¨r Mikrobiologie, Universita¨t Freiburg, Scha¨nzlestrasse 1, D-79104 Freiburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 1, 2008 (received for review February 1, 2008) Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic starting from acetyl-CoA (4). On the basis of these data, pyruvate Archaeum that serves as a host for the symbiotic/parasitic Archaeum synthase and phosphoenolpyruvate (PEP) carboxylase were pos- Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 tulated as CO2 fixing enzymes, with PEP carboxylase serving as the fixation pathway that starts from acetyl-CoA (CoA), which is reduc- only enzyme used for oxaloacetate synthesis. In addition, the tively carboxylated to pyruvate. Pyruvate is converted to phosphoe- operation of an incomplete ‘‘horseshoe-type’’ citric acid cycle, in nol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate which 2-oxoglutarate oxidation does not take place, was demon- formation branch off. Here, we present the complete metabolic cycle strated. Enzyme and labeling data indicated a conventional glu- by which the primary CO2 acceptor molecule acetyl-CoA is regener- coneogenesis, but with some enzymes unrelated to those of the ated. Oxaloacetate is reduced to succinyl-CoA by an incomplete classical pathway.
    [Show full text]
  • Recreating Ancient Metabolic Pathways Before Enzymes Kamila B
    Recreating ancient metabolic pathways before enzymes Kamila B. Muchowska, Elodie Chevallot-Beroux, Joseph Moran To cite this version: Kamila B. Muchowska, Elodie Chevallot-Beroux, Joseph Moran. Recreating ancient metabolic path- ways before enzymes. Bioorganic and Medicinal Chemistry, Elsevier, 2019, 27 (12), pp.2292-2297. 10.1016/j.bmc.2019.03.012. hal-02516541 HAL Id: hal-02516541 https://hal.archives-ouvertes.fr/hal-02516541 Submitted on 23 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered. Recreating ancient metabolic pathways Leave this area blank for abstract info. before enzymes Kamila B. Muchowskaa* , Elodie Chevallot-Berouxa, and Joseph Morana* University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com Recreating ancient metabolic pathways before enzymes Kamila B. Muchowska,a* Elodie Chevallot-Beroux,a and Joseph Morana* a University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France. ARTICLE INFO ABSTRACT Article history: The biochemistry of all living organisms uses complex, enzyme-catalyzed metabolic reaction Received networks.
    [Show full text]
  • A Survey of Carbon Fixation Pathways Through a Quantitative Lens
    Journal of Experimental Botany, Vol. 63, No. 6, pp. 2325–2342, 2012 doi:10.1093/jxb/err417 Advance Access publication 26 December, 2011 REVIEW PAPER A survey of carbon fixation pathways through a quantitative lens Arren Bar-Even, Elad Noor and Ron Milo* Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel * To whom correspondence should be addressed. E-mail: [email protected] Received 15 August 2011; Revised 4 November 2011; Accepted 8 November 2011 Downloaded from Abstract While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it http://jxb.oxfordjournals.org/ has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects, including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures at Weizmann Institute of Science on July 3, 2016 of yet unknown carbon fixation pathways are suggested and discussed.
    [Show full text]
  • Mitochondrial Uncoupling and the Reprograming of Intermediary Metabolism in Leukemia Cells
    REVIEW ARTICLE published: 02 April 2013 doi: 10.3389/fonc.2013.00067 Mitochondrial uncoupling and the reprograming of intermediary metabolism in leukemia cells Juliana Vélez 1, Numsen Hail Jr.2,3, Marina Konopleva2,3, Zhihong Zeng 2,3, Kensuke Kojima2,3, Ismael Samudio1* and Michael Andreeff 2,3* 1 Grupo de Terapia Celular y Molecular Laboratorio de Bioquimica, Pontificia Universidad Javeriana, Bogotá, Colombia 2 Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 3 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Edited by: Nearly 60 years ago Otto Warburg proposed, in a seminal publication, that an irreparable Jozsef Dudas, Medical University defect in the oxidative capacity of normal cells supported the switch to glycolysis for energy Innsbru, Austria generation and the appearance of the malignant phenotype (Warburg, 1956). Curiously, Reviewed by: Daniel Christian Hoessli, International this phenotype was also observed by Warburg in embryonic tissues, and recent research Center for Chemical and Biological demonstrated that normal stem cells may indeed rely on aerobic glycolysis – fermenting Sciences, Switzerland pyruvate to lactate in the presence of ample oxygen – rather than on the complete oxidation Jozsef Dudas, Medical University of pyruvate in the Krebs cycle – to generate cellular energy (Folmes et al., 2012). However, Innsbruck, Austria it remains to be determined whether this phenotype is causative for neoplastic develop- *Correspondence: Ismael Samudio, Laboratorio de ment, or rather the result of malignant transformation. In addition, in light of mounting Bioquimica #301, Edificio Jesús evidence demonstrating that cancer cells can carry out electron transport and oxidative Emilio Ramírez, Pontificia Universidad phosphorylation, although in some cases predominantly using electrons from non-glucose Javeriana, Cra 7 No.
    [Show full text]
  • Life As a Guide to Prebiotic Nucleotide Synthesis
    COMMENT DOI: 10.1038/s41467-018-07220-y OPEN Life as a guide to prebiotic nucleotide synthesis Stuart A. Harrison1 & Nick Lane 1 Synthesis of activated nucleotides has been accomplished under ‘prebiotically plausible’ conditions, but bears little resemblance to the chemistry of life as we know it. Here we argue that life is an indispensable guide to its own origins. 1234567890():,; “The justification of prebiotic syntheses by appealing to their similarity to enzymatic mechanisms has been routine in the literature of prebiotic chemistry. Acceptance of the RNA World hypothesis invalidates this type of argument. If the RNA World originated de novo on the primitive Earth, it erects an almost opaque barrier between biochemistry and prebiotic chemistry.” Leslie Orgel 2004. There is little doubt that RNA is central to the origins of genetic information and protein synthesis, but that is a far cry from the stronger statement, articulated by Orgel, that if metabolism arose from an RNA world, then life can give no insights into its own origin1. Yet this view resonates with much prebiotic chemistry over the last decade. Activated pyrimidine and oxopurine nucleotides have been synthesised at good yield from purportedly prebiotically plausible precursors such as cyanide and cyanoacetylene, driven by UV radiation2. Wet-dry cycles in the presence of laminated clay minerals and lipids can polymerise nucleotides to RNA3. Accordingly, some claim that the problem has already been solved, at least conceptually. Has it? Not in everybody’s view. Perhaps the biggest problem is that the chemistry involved in these clever syntheses does not narrow the gap between prebiotic chemistry and biochemistry—it does not resemble extant biochemistry in terms of substrates, reaction pathways, catalysts or energy coupling4.
    [Show full text]
  • 10 Metabolism
    Route to life by chemical networks P. L. Luisi Mol Syst Biol. 2014, 10, 729 Metabolism-first vs. Genes-first Genetics/replication-first: an information-carrying polymer capable of replication (RNA or something simpler) spontaneously arose from available prebiotic molecules available on early Earth. Metabolism incorporated later as a mean to receive energy from the surroundings in a controlled manner. Metabolism-first: primitive metabolic cycles spontaneously assembled from simple prebiotic organic molecules or inorganic carbon sources as CO2. And the cycles produced a set or more or less complex molecules needed for the replication process and construction of the genetic apparatus. The supposed proto-metabolism would differ from the currently known one, because the chemical reactions were not catalysed by efficient enzymes, nor were aminoacid and peptide sequences determined by DNA. The involved reactions were either spontaneous, or catalysed by inorganic catalysts or peptides. Inorganic catalysts would be molecules, or ions, in solutions or on surfaces of solids such as clays or pyrites. Peptides (or peptoids) formed either by random oligomerization or mutual catalysis. Metabolism and self-organization of chemical networks One of pre-conditions for life is to be far from thermodynamic equilibrium. Life uses non-linear effects to amplify and stabilize minor environmental effects Spatial and temporal synchronisation of reactive processes provides molecules with patterns of collective behavior. Under certain conditions far from thermodynamic equilibrium, heterogenous mixtures can trigger emergent properties at the collective level. Oscilatory and autocatalytic processes are very common in biological systems. Examples include: metabolic cycles, immune response, or apoptosis. Oscilatory reactions – importance for homeostasis.
    [Show full text]
  • Profile of Bob B. Buchanan PROFILE
    PROFILE Profile of Bob B. Buchanan PROFILE Paul Gabrielsen, Science Writer On a clear June day in 1975, Bob Buchanan and two anaerobic fermentation pro- Oslo colleagues pulled up water samples from a lake cesses responsible for their in Norway, examining the microorganisms growing at beverages. Another friend at various depths. “When we got to 6 meters,” Buchanan Duke was Melinda Speas, a recalls, “there was a band of Chlorobium growing,” graduate student in zoology. referring to a genus of green bacteria (now called Their friendship was later Chlorobaculum) that belongs to a unique class of or- rekindled in California and they ganisms called photolithotrophs. These bacteria re- married in 1965. quire sunlight for photosynthesis but obtain cellular After earning his doctorate reductants from sulfur compounds rather than water. in 1962, Buchanan secured a The bacteria buck the traditional chemical pathways postdoctoral fellowship at the for energy production and carbon fixation and instead University of California, Berkeley, use pathways discovered by Buchanan, a member of where he would spend the next the National Academy of Sciences and emeritus pro- 55 years. He hoped to work fessor at the University of California, Berkeley. with renowned microbiologist H. A. Barker, but because From Appalachia to the Laboratory Barker was on sabbatical leave Buchanan was born in 1937 in Richmond, Virginia. at the time, Buchanan instead Fearing for the family’s safety during World War II, joined the group of Barker’s Buchanan’s mother took him and his two older sisters former student, Jesse Rabinowitz. to a family farm in Southwest Virginia, near the Ap- Buchanan and Rabinowitz crys- Bob B.
    [Show full text]
  • Synthesis and Breakdown of the Universal Precursors to Biological Metabolism Promoted by Ferrous Iron K
    Synthesis and breakdown of the universal precursors to biological metabolism promoted by ferrous iron K. B. Muchowska1, S. J. Varma1, J. Moran1* 1University of Strasbourg, CNRS, ISIS & icFRC, 8 allée G. Monge, 67000 Strasbourg, France. *Correspondence to: [email protected] Abstract: How core biological metabolism initiated and why it uses the intermediates, reactions and pathways that it does remains unclear. Life builds its molecules from CO2 and breaks them down to CO2 again through the intermediacy of just five metabolites that act as the hubs of biochemistry. Here, we describe a purely chemical reaction network promoted by Fe2+ in which aqueous pyruvate and glyoxylate, two products of abiotic CO2 reduction, build up nine of the eleven TCA cycle intermediates, including all five universal metabolic precursors. The intermediates simultaneously break down to CO2 in a life-like regime resembling biological anabolism and catabolism. Introduction of hydroxylamine and Fe0 produces four biological amino acids. The network significantly overlaps the TCA/rTCA and glyoxylate cycles and may represent a prebiotic precursor to these core metabolic pathways. At the ecosystem level, biochemistry is simultaneously building itself up from CO2 and breaking down to CO2 again. This dynamic, far-from-equilibrium process occurs through the intermediacy of just five universal metabolites made of C, H and O: acetate, pyruvate, oxaloacetate, succinate, and ketoglutarate (1). These five compounds are found directly on or near life’s core anabolic and catabolic pathways, imparting them with an organizing role within metabolism (2). Theories for the chemical origins of life based on prebiotic analogs of core metabolic pathways therefore hold a high explanatory value for why life uses the compounds, reactions and pathways that it does (3- 7).
    [Show full text]
  • Chapter 1 Photosynthesis
    Revised Edition: 2016 ISBN 978-1-283-50684-7 © All rights reserved. Published by: The English Press 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: [email protected] Table of Contents Chapter 1 - Photosynthesis Chapter 2 - Photomorphogenesis Chapter 3 - Visual System Chapter 4 - Circadian Rhythm Chapter 5 - Bioluminescence Chapter 6 - Ultraviolet Chapter 7 - Light Therapy Chapter 8 - Light Effects on Circadian Rhythm and Scotobiology WT ________________________WORLD TECHNOLOGIES________________________ Chapter 1 Photosynthesis WT Composite image showing the global distribution of photosynthesis, including both ocea- nic phytoplankton and vegetation Overall equation for the type of photosynthesis that occurs in plants Photosynthesis is a process that converts carbon dioxide into organic compounds, es- pecially sugars, using the energy from sunlight. Photosynthesis occurs in plants, algae, ________________________WORLD TECHNOLOGIES________________________ and many species of bacteria, but not in archaea. Photosynthetic organisms are called photoautotrophs, since they can create their own food. In plants, algae, and cyanoba- cteria, photosynthesis uses carbon dioxide and water, releasing oxygen as a waste product. Photosynthesis is vital for all aerobic life on Earth. As well as maintaining the normal level of oxygen in the atmosphere, nearly all life either depends on it directly as a source of energy, or indirectly as the ultimate source of the energy in their food (the exceptions are chemoautotrophs that live in rocks or around deep sea hydrothermal vents). The rate of energy capture by photosynthesis is immense, approximately 100 terawatts, which is about six times larger than the power consumption of human civilization. As well as energy, photosynthesis is also the source of the carbon in all the organic compounds within organisms' bodies.
    [Show full text]
  • The Origins of Life: a Review of Scientific Inquiry
    The Origins of Life: A Review of Scientific Inquiry April 2020 Professor H James Cleaves Earth-Life Science Institute Tokyo Institute of Technology 1 Table of Contents 1. INTRODUCTION .............................................................................................. 3 2. TOP-DOWN AND BOTTOM-UP APPROACHES .................................................... 5 3. HISTORICAL BACKGROUND ............................................................................ 8 4. OVERVIEW OF BIOLOGY ................................................................................ 15 5. OVERVIEW OF SOLAR SYSTEM AND EARTH HISTORY .................................... 18 6. PREBIOTIC CHEMISTRY AND MODELS FOR THE ORIGINS OF LIFE ................ 32 6.1 PREBIOTIC SYNTHESES OF BIOCHEMICALS ............................................................................. 42 Amino Acids ............................................................................................................................................ 42 Lipids and Membrane-Forming Compounds ............................................................................................... 45 Nucleic Acids and Their Components ......................................................................................................... 46 Sugars .................................................................................................................................................... 50 Cofactors and Other Small Molecules ........................................................................................................
    [Show full text]
  • Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean
    MA03CH10-Sievert ARI 9 November 2010 10:49 Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean Michael Hugler¨ 1 and Stefan M. Sievert2 1Microbiology Department, Water Technology Center, 76139 Karlsruhe, Germany; email: [email protected] 2Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543; email: [email protected] Annu. Rev. Mar. Sci. 2011. 3:261–89 Keywords First published online as a Review in Advance on reductive TCA cycle, hydrothermal vents, oxygen deficiency zones, October 1, 2010 mesopelagic, bathypelagic, subseafloor, marine microbiology The Annual Review of Marine Science is online at marine.annualreviews.org Abstract by University of Washington on 03/23/11. For personal use only. This article’s doi: Organisms capable of autotrophic metabolism assimilate inorganic carbon 10.1146/annurev-marine-120709-142712 into organic carbon. They form an integral part of ecosystems by mak- Copyright c 2011 by Annual Reviews. ! ing an otherwise unavailable form of carbon available to other organisms, Annu. Rev. Marine. Sci. 2011.3:261-289. Downloaded from www.annualreviews.org All rights reserved a central component of the global carbon cycle. For many years, the doc- 1941-1405/11/0115-0261$20.00 trine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that au- totrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean.
    [Show full text]
  • Alternative Pathways of Carbon Dioxide Fixation: Insights Into the Early Evolution of Life?
    MI65CH31-Fuchs ARI 27 July 2011 9:46 Alternative Pathways of Carbon Dioxide Fixation: Insights into the Early Evolution of Life? Georg Fuchs Lehrstuhl Mikrobiologie, Fakultat¨ fur¨ Biologie, Universitat¨ Freiburg, D-79104 Freiburg, Germany; email: [email protected] Annu. Rev. Microbiol. 2011. 65:631–58 Keywords First published online as a Review in Advance on autotrophy, chemical evolution, carbon metabolism, carboxylases, July 6, 2011 origin of life, prebiotic chemistry The Annual Review of Microbiology is online at micro.annualreviews.org Abstract This article’s doi: The fixation of inorganic carbon into organic material (autotrophy) is a 10.1146/annurev-micro-090110-102801 prerequisite for life and sets the starting point of biological evolution. In Copyright c 2011 by Annual Reviews. the extant biosphere the reductive pentose phosphate (Calvin-Benson) All rights reserved cycle is the predominant mechanism by which many prokaryotes and 0066-4227/11/1013-0631$20.00 Annu. Rev. Microbiol. 2011.65:631-658. Downloaded from www.annualreviews.org all plants fix CO2 into biomass. However, the fact that five alternative autotrophic pathways exist in prokaryotes is often neglected. This bias may lead to serious misjudgments in models of the global carbon cycle, Access provided by Universidad Nacional Autonoma de Mexico on 07/03/19. For personal use only. in hypotheses on the evolution of metabolism, and in interpretations of geological records. Here, I review these alternative pathways that differ fundamentally from the Calvin-Benson cycle. Revealingly, these five alternative pathways pivot on acetyl-coenzyme A, the turntable of metabolism, demanding a gluconeogenic pathway starting from acetyl- coenzyme A and CO2.
    [Show full text]