Mitochondrial Genetic Diversity and Its Determinants in Island Melanesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Y-Chromosome and Surname Analyses for Reconstructing Past Population Structures: the Sardinian Population As a Test Case
International Journal of Molecular Sciences Article Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case Viola Grugni 1, Alessandro Raveane 1, Giulia Colombo 1, Carmen Nici 1, Francesca Crobu 1,2, Linda Ongaro 1,3,4, Vincenza Battaglia 1, Daria Sanna 1,5, Nadia Al-Zahery 1, Ornella Fiorani 6, Antonella Lisa 6, Luca Ferretti 1 , Alessandro Achilli 1, Anna Olivieri 1, Paolo Francalacci 7, Alberto Piazza 8, Antonio Torroni 1 and Ornella Semino 1,* 1 Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; [email protected] (V.G.); [email protected] (A.R.); [email protected] (G.C.); [email protected] (C.N.); [email protected] (F.C.); [email protected] (L.O.); [email protected] (V.B.); [email protected] (D.S.); [email protected] (N.A.-Z.); [email protected] (L.F.); [email protected] (A.A.); [email protected] (A.O.); [email protected] (A.T.) 2 Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy 3 Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia 4 Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia 5 Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy 6 Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; fi[email protected] -
Mitochondrial Haplogroup Background May Influence
Genetics Mitochondrial Haplogroup Background May Influence Southeast Asian G11778A Leber Hereditary Optic Neuropathy Supannee Kaewsutthi,1,2 Nopasak Phasukkijwatana,2,3 Yutthana Joyjinda,1 Wanicha Chuenkongkaew,3,4 Bussaraporn Kunhapan,1 Aung Win Tun,1 Bhoom Suktitipat,1 and Patcharee Lertrit1,4 PURPOSE. To investigate the role of mitochondrial DNA markedly incomplete penetrance. The three most common (mt DNA) background on the expression of Leber hereditary primary LHON mutations, G3460A in ND1, G11778A in ND4, optic neuropathy (LHON) in Southeast Asian carriers of the and T14484C in ND6, account for more than 90% of LHON G11778A mutation. cases worldwide2 with G11778A being the most common. In 3 4–6 METHODS. Complete mtDNA sequences were analyzed from 53 Thailand and other Asian countries, G11778A is responsi- unrelated Southeast Asian G11778A LHON pedigrees in Thai- ble for approximately 90% of LHON families. land and 105 normal Thai controls, and mtDNA haplogroups The sex bias and the marked incomplete penetrance of were determined. Clinical phenotypes were tested for associ- LHON indicate that there must be other factors that modify disease expression. Mitochondrial background,7–8 nuclear ation with mtDNA haplogroup, with adjustment for potential 9–11 12 confounders such as sex and age at onset. background, and environmental factors have been impli- cated in disease expression, although the precise mechanisms RESULTS. mtDNA subhaplogroup B was significantly associated of pathogenesis are largely undefined. with LHON. Follow-up analysis -
The Southwest Pacific: U.S
Order Code RL34086 The Southwest Pacific: U.S. Interests and China’s Growing Influence July 6, 2007 Thomas Lum Specialist in Asian Affairs Foreign Affairs, Defense, and Trade Division Bruce Vaughn Specialist in Asian Affairs Foreign Affairs, Defense, and Trade Division The Southwest Pacific: U.S. Interests and China’s Growing Influence Summary This report focuses on the 14 sovereign nations of the Southwest Pacific, or Pacific Islands region, and the major external powers (the United States, Australia, New Zealand, France, Japan, and China). It provides an explanation of the region’s main geographical, political, and economic characteristics and discusses United States interests in the Pacific and the increased influence of China, which has become a growing force in the region. The report describes policy options as considered at the Pacific Islands Conference of Leaders, held in Washington, DC, in March 2007. Although small in total population (approximately 8 million) and relatively low in economic development, the Southwest Pacific is strategically important. The United States plays an overarching security role in the region, but it is not the only provider of security, nor the principal source of foreign aid. It has relied upon Australia and New Zealand to help promote development and maintain political stability in the region. Key components of U.S. engagement in the Pacific include its territories (Guam, the Northern Mariana Islands, and American Samoa), the Freely Associated States (Marshall Islands, Micronesia, and Palau), military bases on Guam and Kwajalein atoll (Marshall Islands), and relatively limited aid and economic programs. Some experts argue that U.S. involvement in the Southwest Pacific has waned since the end of the Cold War, leaving a power vacuum, and that the United States should pay greater attention to the region and its problems. -
Y-Chromosomal and Mitochondrial SNP Haplogroup Distribution In
Open Access Austin Journal of Forensic Science and Criminology Review Article Y-Chromosomal and Mitochondrial SNP Haplogroup Distribution in Indian Populations and its Significance in Disaster Victim Identification (DVI) - A Review Based Molecular Approach Sinha M1*, Rao IA1 and Mitra M2 1Department of Forensic Science, Guru Ghasidas Abstract University, India Disaster Victim Identification is an important aspect in mass disaster cases. 2School of Studies in Anthropology, Pt. Ravishankar In India, the scenario of disaster victim identification is very challenging unlike Shukla University, India any other developing countries due to lack of any organized government firm who *Corresponding author: Sinha M, Department of can make these challenging aspects an easier way to deal with. The objective Forensic Science, Guru Ghasidas University, India of this article is to bring spotlight on the potential and utility of uniparental DNA haplogroup databases in Disaster Victim Identification. Therefore, in this article Received: December 08, 2016; Accepted: January 19, we reviewed and presented the molecular studies on mitochondrial and Y- 2017; Published: January 24, 2017 chromosomal DNA haplogroup distribution in various ethnic populations from all over India that can be useful in framing a uniparental DNA haplogroup database on Indian population for Disaster Victim Identification (DVI). Keywords: Disaster Victim identification; Uniparental DNA; Haplogroup database; India Introduction with the necessity mentioned above which can reveal the fact that the human genome variation is not uniform. This inconsequential Disaster Victim Identification (DVI) is the recognized practice assertion put forward characteristics of a number of markers ranging whereby numerous individuals who have died as a result of a particular from its distribution in the genome, their power of discrimination event have their identity established through the use of scientifically and population restriction, to the sturdiness nature of markers to established procedures and methods [1]. -
Agricultural Systems of Papua New Guinea Working Paper No
AGRICULTURAL SYSTEMS OF PAPUA NEW GUINEA Working Paper No. 6 MILNE BAY PROVINCE TEXT SUMMARIES, MAPS, CODE LISTS AND VILLAGE IDENTIFICATION R.L. Hide, R.M. Bourke, B.J. Allen, T. Betitis, D. Fritsch, R. Grau, L. Kurika, E. Lowes, D.K. Mitchell, S.S. Rangai, M. Sakiasi, G. Sem and B. Suma Department of Human Geography, The Australian National University, ACT 0200, Australia REVISED and REPRINTED 2002 Correct Citation: Hide, R.L., Bourke, R.M., Allen, B.J., Betitis, T., Fritsch, D., Grau, R., Kurika, L., Lowes, E., Mitchell, D.K., Rangai, S.S., Sakiasi, M., Sem, G. and Suma,B. (2002). Milne Bay Province: Text Summaries, Maps, Code Lists and Village Identification. Agricultural Systems of Papua New Guinea Working Paper No. 6. Land Management Group, Department of Human Geography, Research School of Pacific and Asian Studies, The Australian National University, Canberra. Revised edition. National Library of Australia Cataloguing-in-Publication Entry: Milne Bay Province: text summaries, maps, code lists and village identification. Rev. ed. ISBN 0 9579381 6 0 1. Agricultural systems – Papua New Guinea – Milne Bay Province. 2. Agricultural geography – Papua New Guinea – Milne Bay Province. 3. Agricultural mapping – Papua New Guinea – Milne Bay Province. I. Hide, Robin Lamond. II. Australian National University. Land Management Group. (Series: Agricultural systems of Papua New Guinea working paper; no. 6). 630.99541 Cover Photograph: The late Gore Gabriel clearing undergrowth from a pandanus nut grove in the Sinasina area, Simbu Province (R.L. -
Y-Chromosome Marker S28 / U152 Haplogroup R-U152 Resource Page
Y-Chromosome Marker S28 / U152 Haplogroup R-U152 Resource Page David K. Faux To use this page as a resource tool, click on the blue highlighted words, which will take the reader to a relevant link. How was this marker discovered? In 2005 Hinds et al. published a paper outlining the discovery of almost 1.6 million SNPs in 71 Americans by Perlegen.com, and which were deposited in the online dbSNP database. Gareth Henson noticed three SNPs that appeared to be associated with M269, what was then known as haplogroup R1b1c. Dr. James F. Wilson of EthnoAncestry developed primers for these Single Nucleotide Polymorphism (SNP) markers on the Y-chromosome, one of which was given the name of S28 (part of the S-series of SNPs developed by Dr. Wilson). Who were the first to be identified with this SNP? In testing the DNA of a number of R- M269 males (customers or officers of EthnoAncestry), two were found to be positive for S28 (U152). These were Charles Kerchner (of German descent) and David K. Faux, co- founder of EthnoAncestry (of English descent). How is this marker classified? In 2006 the International Society of Genetic Genealogists (ISOGG) developed a phylogenetic tree since the academic grouping (the Y Chromosome Consortium – YCC) set up to do this task had lapsed in 2002. They determined, with the assistance of Dr. Wilson, that the proper placement would be R1b1c10, in other words downstream of M269 the defining marker for R1b1c. Karafet et al. (2008) (including Dr. Michael Hammer of the original YCC group) published a new phylogenetic tree in the journal Genome Research. -
Ancient Mitochondrial DNA from Pre-Historic
Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 4-30-2011 Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt Jeremy R. Newton Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Newton, Jeremy R., "Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt" (2011). Masters Theses. 5. http://scholarworks.gvsu.edu/theses/5 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. ANCIENT MITOCHONDRIAL DNA FROM PRE-HISTORIC SOUTH- EASTERN EUROPE: THE PRESENCE OF EAST EURASIAN HAPLOGROUPS PROVIDES EVIDENCE OF INTERACTIONS WITH SOUTH SIBERIANS ACROSS THE CENTRAL ASIAN STEPPE BELT A thesis submittal in partial fulfillment of the requirements for the degree of Master of Science By Jeremy R. Newton To Cell and Molecular Biology Department Grand Valley State University Allendale, MI April, 2011 “Not all those who wander are lost.” J.R.R. Tolkien iii ACKNOWLEDGEMENTS I would like to extend my sincerest thanks to every person who has motivated, directed, and encouraged me throughout this thesis project. I especially thank my graduate advisor, Dr. -
Ultimate Cruising
ultimatecruising.com.au or call us on 1300 485 846 Solomon Islands and Papua New Guinea FROM $9,120pp Package #422 This PONANT 12-day Expedition cruise aboard Le Soléal will take you to discover the wonders of Papua New Guinea. Departing from Honiara, embark for an extraordinary adventure to discover very rich local cultures and exceptional underwater life. Le Soléal will set sail for Papua New Guinea, a fascinating land that is home to no fewer than 700 ethnic groups within a highly diverse yet mainly unexplored, ecosystem. You will visit the Autonomous region of Bougainville, a unique group of islands that are ecologically and geographically part of the Solomon Islands archipelago but not politically part of the nation of Solomon Islands. Located on the island of New Britain, the port town of Rabaul is famous for its spectacular volcanic setting. From there, you will set off to observe Mount Tavurvur, the region’s most active volcano. Your call at Tufi, will undoubtedly be one of the highlights of your voyage. You will fall under the charm of this picturesque region, dubbed the ‘Scandinavia of the Tropics’ with its deep fiords through volcanic activity. In this unique setting the local Papuan tribes will share their customs, beliefs and artwork with you. After a last call in Samarai Island, your trip aboard Le Soléal will end in Cairns. Package Inclusions Economy class airfare from Brisbane to Honiara (selected by PONANT) Transfer from airport to pier for embarkation 11 night luxury cruise from Honiara to Cairns with PONANT All meals onboard the cruise Wide selection of drinks (mineral water, soft drinks, wine, beer, Henri Abelé BRUT champagne, spirits, coffee, tea) is served on request and at any time of the day. -
A Prehistory of Indian Y Chromosomes: Evaluating Demic Diffusion Scenarios
A prehistory of Indian Y chromosomes: Evaluating demic diffusion scenarios Sanghamitra Sahoo†, Anamika Singh†, G. Himabindu†, Jheelam Banerjee†, T. Sitalaximi†, Sonali Gaikwad†, R. Trivedi†, Phillip Endicott‡, Toomas Kivisild§, Mait Metspalu§, Richard Villems§, and V. K. Kashyap†¶ʈ †National DNA Analysis Centre, Central Forensic Science Laboratory, Kolkata 700014, India; ‡Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; §Estonian Biocentre, 51010 Tartu, Estonia; and ¶National Institute of Biologicals, Noida 201307, India Edited by Colin Renfrew, University of Cambridge, Cambridge, United Kingdom, and approved November 23, 2005 (received for review September 5, 2005) Understanding the genetic origins and demographic history of mode of subsistence or social system. Even so, the trend of Indian populations is important both for questions concerning the finding farming (castes) and IE languages grouped together has early settlement of Eurasia and more recent events, including the led some to suggest a major demic diffusion, associated with the appearance of Indo-Aryan languages and settled agriculture in the spread of agriculture, from West Asia and͞or Central Asia to subcontinent. Although there is general agreement that Indian India, (16). The situation in Northeast India is less intensely caste and tribal populations share a common late Pleistocene studied, but the proximity to related language families in East maternal ancestry in India, some studies of the Y-chromosome and Southeast Asia suggests possible origins for the Tibeto- markers have suggested a recent, substantial incursion from Cen- Burman (TB) clade of the Sino-Tibetan family outside India. tral or West Eurasia. To investigate the origin of paternal lineages The Mundari group of Austro-Asiatic (AA) languages is cur- of Indian populations, 936 Y chromosomes, representing 32 tribal rently found almost exclusively in East India. -
Mitochondrial DNA Diversity of Present-Day Aboriginal Australians and Implications for Human Evolution in Oceania
Journal of Human Genetics (2016), 1–11 & 2016 The Japan Society of Human Genetics All rights reserved 1434-5161/16 www.nature.com/jhg ORIGINAL ARTICLE Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania Nano Nagle1, Kaye N Ballantyne2,3, Mannis van Oven3, Chris Tyler-Smith4, Yali Xue4, Stephen Wilcox5, Leah Wilcox1, Rust Turkalov5, Roland AH van Oorschot2, Sheila van Holst Pellekaan6,7, Theodore G Schurr8, Peter McAllister9, Lesley Williams10, Manfred Kayser3, R John Mitchell1 and The Genographic Consortium27 Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors’ arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages 440 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. -
Pacific Islander Migration to Australia: the 1980S and Beyond’ Christine Mcmurray and David Lucas
Pacific islander migration to Australia: the 1980s and beyond’ Christine McMurray and David Lucas The 1981 Census of Australia counted 34,826 sume that a large proportion of those in the persons born in Melanesia and Polynesia; by category 0-4 years were residents. 1986 this figure had increased by 39 per cent to Most of the Papua New Guinea-born are 48,536. Prior to 1981 those born in Papua New children of Australians or others born outside Guinea were not distinguished from Papua New Guinea. Connel12 estimated that Australians in the census. However, if the only about 10 per cent were Papua New Papua New Guinea-born are excluded from the Guinea nationals in 1981. In 1986 only 12 per figures for 1981 and 1986 the increase is even cent did not have Australian citizenship, and more striking. In 1976 there were 9663 Pacific- hence could have been Papua New Guinea na- born (including the catch-all category ‘Other tionals. Similarly, many migrants born in New Oceania’but excluding Papua New Guinea and Caledonia, where the Melanesian Kanaks are New Zealand). By 1981 there were 16,129 from now in the minority, could be children of Melanesia and Polynesia alone, and by 1986 French settlers. However, most of those born in there were 27,185; an increase of more than other Pacific states can be assumed to be of 180 per cent in the ten-year period. This paper Polynesian, Melanesian, Indo-Fijian or considers the implications of this change and Micronesian descent. In Fiji, the Melanesians whether migration from this source can be ex- are predominantly Christian, compared with pected to accelerate or decelerate in the next only a small percentage of the Indo-Fijians. -
The Enigmatic Origin of Bovine Mtdna Haplogroup R: Sporadic Interbreeding Or an Independent Event of Bos Primigenius Domestication in Italy?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central The Enigmatic Origin of Bovine mtDNA Haplogroup R: Sporadic Interbreeding or an Independent Event of Bos primigenius Domestication in Italy? Silvia Bonfiglio1, Alessandro Achilli1,2, Anna Olivieri1, Riccardo Negrini3, Licia Colli3, Luigi Liotta4, Paolo Ajmone-Marsan3, Antonio Torroni1, Luca Ferretti1* 1 Dipartimento di Genetica e Microbiologia, Universita` di Pavia, Pavia, Italy, 2 Dipartimento di Biologia Cellulare e Ambientale, Universita` di Perugia, Perugia, Italy, 3 Istituto di Zootecnica, Universita` Cattolica del Sacro Cuore, Piacenza, Italy, 4 Dipartimento di Morfologia, Biochimica, Fisiologia e Produzioni Animali, Universita` di Messina, Messina, Italy Abstract Background: When domestic taurine cattle diffused from the Fertile Crescent, local wild aurochsen (Bos primigenius) were still numerous. Moreover, aurochsen and introduced cattle often coexisted for millennia, thus providing potential conditions not only for spontaneous interbreeding, but also for pastoralists to create secondary domestication centers involving local aurochs populations. Recent mitochondrial genomes analyses revealed that not all modern taurine mtDNAs belong to the shallow macro-haplogroup T of Near Eastern origin, as demonstrated by the detection of three branches (P, Q and R) radiating prior to the T node in the bovine phylogeny. These uncommon haplogroups represent excellent tools to evaluate if sporadic interbreeding or even additional events of cattle domestication occurred. Methodology: The survey of the mitochondrial DNA (mtDNA) control-region variation of 1,747 bovine samples (1,128 new and 619 from previous studies) belonging to 37 European breeds allowed the identification of 16 novel non-T mtDNAs, which after complete genome sequencing were confirmed as members of haplogroups Q and R.