Manual-4.0.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
GROMACS Groningen Machine for Chemical Simulations USER MANUAL Version 4.0 GROMACS USER MANUAL Version 4.0 David van der Spoel, Erik Lindahl, Berk Hess Carsten Kutzner Aldert R. van Buuren Emile Apol Pieter J. Meulenhoff D. Peter Tieleman Alfons L.T.M. Sijbers K. Anton Feenstra Rudi van Drunen Herman J.C. Berendsen c 1991–2000: Department of Biophysical Chemistry, University of Groningen. Nijenborgh 4, 9747 AG Groningen, The Netherlands. c 2001–2006: The GROMACS development team. More information can be found on our website: www.gromacs.org. iv Preface & Disclaimer This manual is not complete and has no pretention to be so due to lack of time of the contributors – our first priority is to improve the software. It is worked on continuously, which in some cases might mean the information is not entirely correct. Comments are welcome, please send them by e-mail to [email protected], or to one of the mailing lists (see www.gromacs.org). We try to release an updated version of the manual whenever we release a new version of the soft- ware, so in general it is a good idea to use a manual with the same major and minor release number as your GROMACS installation. Any revision numbers (like 3.1.1) are however independent, to make it possible to implement bugfixes and manual improvements if necessary. Online Resources You can find more documentation and other material at our homepage www.gromacs.org. Among other things there is an online reference, several GROMACS mailing lists with archives and con- tributed topologies/force fields. Citation information When citing this document in any scientific publication please refer to it as: D. van der Spoel, E. Lindahl, B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C. Berendsen, Gromacs User Manual version 4.0, www.gromacs.org (2005) However, we prefer that you cite (some of) the GROMACS papers [1,2,3,4] when you publish your results. Any future development depends on academic research grants, since the package is distributed as free software! Current development Gromacs is a joint effort, with contributions from lots of developers around the world. The core development is currently taking place at • Department of Cellular and Molecular Biology, Uppsala University, Sweden. (David van der Spoel). • Stockholm Bioinformatics Center, Stockholm University, Sweden (Erik Lindahl). • Max Planck Institute for Polymer Research, Mainz, Germany (Berk Hess) v GROMACS is Free Software The entire GROMACS package is available under the GNU General Public License. This means it’s free as in free speech, not just that you can use it without paying us money. For details, check the COPYING file in the source code or consult www.gnu.org/copyleft/gpl.html. The GROMACS source code and and selected set of binary packages are available on our home- page, www.gromacs.org. Have fun. vi Contents 1 Introduction1 1.1 Computational Chemistry and Molecular Modeling................1 1.2 Molecular Dynamics Simulations..........................2 1.3 Energy Minimization and Search Methods.....................5 2 Definitions and Units7 2.1 Notation.......................................7 2.2 MD units......................................7 2.3 Reduced units....................................9 3 Algorithms 11 3.1 Introduction..................................... 11 3.2 Periodic boundary conditions............................ 11 3.2.1 Some useful box types........................... 13 3.2.2 Cutoff restrictions............................. 14 3.3 The group concept................................. 14 3.4 Molecular Dynamics................................ 15 3.4.1 Initial conditions.............................. 17 3.4.2 Neighbor searching............................. 18 3.4.3 Compute forces............................... 20 3.4.4 Update configuration............................ 22 3.4.5 Temperature coupling........................... 22 3.4.6 Pressure coupling.............................. 25 3.4.7 Output step................................. 29 3.5 Shell molecular dynamics.............................. 29 3.5.1 Optimization of the shell positions..................... 29 viii Contents 3.6 Constraint algorithms................................ 30 3.6.1 SHAKE................................... 30 3.6.2 LINCS................................... 31 3.7 Simulated Annealing................................ 33 3.8 Stochastic Dynamics................................ 34 3.9 Brownian Dynamics................................ 34 3.10 Energy Minimization................................ 35 3.10.1 Steepest Descent.............................. 35 3.10.2 Conjugate Gradient............................. 35 3.10.3 L-BFGS................................... 36 3.11 Normal Mode Analysis............................... 36 3.12 Free energy calculations.............................. 37 3.13 Replica exchange.................................. 39 3.14 Essential Dynamics Sampling........................... 40 3.15 Parallelization.................................... 41 3.16 Particle decomposition............................... 41 3.17 Domain decomposition............................... 41 3.17.1 Coordinate and force communication................... 42 3.17.2 Dynamic load balancing.......................... 42 3.17.3 Constraints in parallel........................... 43 3.17.4 Interaction ranges.............................. 44 3.17.5 Multiple-Program, Multiple-Data PME parallelization.......... 45 3.17.6 Domain decomposition flow chart..................... 46 4 Interaction function and force field 49 4.1 Non-bonded interactions.............................. 49 4.1.1 The Lennard-Jones interaction....................... 50 4.1.2 Buckingham potential........................... 51 4.1.3 Coulomb interaction............................ 51 4.1.4 Coulomb interaction with reaction field.................. 52 4.1.5 Modified non-bonded interactions..................... 53 4.1.6 Modified short-range interactions with Ewald summation......... 55 4.2 Bonded interactions................................. 55 4.2.1 Bond stretching............................... 56 Contents ix 4.2.2 Morse potential bond stretching...................... 57 4.2.3 Cubic bond stretching potential...................... 57 4.2.4 FENE bond stretching potential...................... 58 4.2.5 Harmonic angle potential.......................... 58 4.2.6 Cosine based angle potential........................ 59 4.2.7 Urey-Bradley potential........................... 60 4.2.8 Bond-Bond cross term........................... 60 4.2.9 Bond-Angle cross term........................... 60 4.2.10 Quartic angle potential........................... 60 4.2.11 Improper dihedrals............................. 61 4.2.12 Proper dihedrals.............................. 61 4.2.13 Tabulated interaction functions....................... 64 4.3 Restraints...................................... 64 4.3.1 Position restraints.............................. 64 4.3.2 Angle restraints............................... 65 4.3.3 Dihedral restraints............................. 66 4.3.4 Distance restraints............................. 66 4.3.5 Orientation restraints............................ 70 4.4 Polarization..................................... 74 4.4.1 Simple polarization............................. 74 4.4.2 Water polarization............................. 74 4.4.3 Thole polarization............................. 74 4.5 Free energy interactions............................... 75 4.5.1 Soft-core interactions............................ 77 4.6 Methods....................................... 79 4.6.1 Exclusions and 1-4 Interactions....................... 79 4.6.2 Charge Groups................................ 79 4.6.3 Treatment of Cutoffs............................ 80 4.7 Virtual interaction-sites............................... 80 4.8 Dispersion correction................................ 84 4.8.1 Energy................................... 84 4.8.2 Virial and pressure............................. 85 4.9 Long Range Electrostatics............................. 86 4.9.1 Ewald summation.............................. 86 x Contents 4.9.2 PME.................................... 87 4.9.3 PPPM.................................... 87 4.9.4 Optimizing Fourier transforms....................... 88 4.10 Force field...................................... 89 4.10.1 GROMOS87................................ 89 4.10.2 GROMOS-96................................ 90 4.10.3 OPLS/AA.................................. 91 4.10.4 Amber................................... 91 4.10.5 CHARMM................................. 91 4.10.6 Martini................................... 91 5 Topologies 93 5.1 Introduction..................................... 93 5.2 Particle type..................................... 93 5.2.1 Atom types................................. 94 5.2.2 Virtual sites................................. 95 5.3 Parameter files................................... 96 5.3.1 Atoms.................................... 96 5.3.2 Bonded parameters............................. 96 5.3.3 Non-bonded parameters.......................... 98 5.3.4 Pair interactions.............................. 98 5.4 Exclusions...................................... 99 5.5 Constraints..................................... 100 5.6 Databases...................................... 100 5.6.1 Residue database.............................. 100 5.6.2 Hydrogen database............................. 102 5.6.3 Termini database.............................