Volcanic Emissions and Volcanic Ash)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hawaii Volcanoes National Park Geologic Resources Inventory Report
National Park Service U.S. Department of the Interior Natural Resource Program Center Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 THIS PAGE: Geologists have lloongng been monimonittoorriing the volcanoes of Hawai‘i Volcanoes National Park. Here lalava cascades durduriingng the 1969-1971 Mauna Ulu eruption of Kīlauea VolVolcano. NotNotee the Mauna Ulu fountountaiain in the background. U.S. Geologiogicalcal SurSurvveyey PhotPhotoo by J. B. Judd (12/30/1969). ON THE COVER: ContContiinuouslnuouslyy eruptuptiingng since 1983, Kīllaueaauea Volcano contcontiinues to shapshapee Hawai‘Hawai‘i VoVollccanoes NatiNationalonal ParkPark.. Photo courtesy Lisa Venture/UniversiUniversitty of Cincinnati. Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. -
Vog: Using Volcanic Eruptions to Estimate the Health Costs Of
Vog: Using Volcanic Eruptions to Estimate the Health Costs of Particulates and SO2 by Timothy Halliday, John Lynham and Áureo de Paula Working Paper No. 2015-2 April 2, 2015 UNIVERSITY OF HAWAI‘I AT MANOA 2424 MAILE WAY, ROOM 540 • HONOLULU, HAWAI‘I 96822 WWW.UHERO.HAWAII.EDU WORKING PAPERS ARE PRELIMINARY MATERIALS CIRCULATED TO STIMULATE DISCUSSION AND CRITICAL COMMENT. THE VIEWS EXPRESSED ARE THOSE OF THE INDIVIDUAL AUTHORS. Vog: Using Volcanic Eruptions to Estimate the Health Costs of Particulates and SO2∗ Timothy J. Halliday† John Lynham UH - M¯anoa and IZA UH - M¯anoa Áureo de Paula UCL, São Paulo School of Economics, IFS, CeMMAP April 2, 2015 Abstract K¯ılauea volcano is the largest stationary source of SO2 pollutioninthe United States of America. Moreover, the SO2 that the volcano emits eventu- ally forms particulate matter, another major pollutant. We use this exogenous ∗We thank Jill Miyamura of Hawai‘i Health Information Corporation for the data. Chaning Jang and Jonathan Sweeney provided expert research assistance. We also thank participants at the University of Hawai Applied Micro Group for useful comments. †Corresponding Author. Address: 2424 Maile Way; 533 Saunders Hall; Honolulu, HI 96822. Tele: (808) 956 -8615. E-mail: [email protected]. 1 source of pollution variation to estimate the impact of particulate matter and SO2 on emergency room admissions and costs in the state of Hawai‘i. Impor- tantly, our data on costs is more accurate than the measures used in much of the literature. We find strong evidence that particulate pollution increases pulmonary-related hospitalization. Specifically, a one standard deviation in- crease in particulate pollution leads to a 2-3% increase in expenditures on emergency room visits for pulmonary-related outcomes. -
Vog: Using Volcanic Eruptions to Estimate the Health Costs of Particulates
IZA DP No. 9398 Vog: Using Volcanic Eruptions to Estimate the Health Costs of Particulates Timothy J. Halliday John Lynham Áureo de Paula October 2015 DISCUSSION PAPER SERIES Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor Vog: Using Volcanic Eruptions to Estimate the Health Costs of Particulates Timothy J. Halliday University of Hawai’i at Mānoa and IZA John Lynham University of Hawai’i at Mānoa Áureo de Paula UCL, São Paulo School of Economics, IFS and CeMMAP Discussion Paper No. 9398 October 2015 IZA P.O. Box 7240 53072 Bonn Germany Phone: +49-228-3894-0 Fax: +49-228-3894-180 E-mail: [email protected] Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public. -
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
Impact of Trace Metal Concentrations on Coccolithophore Growth and Morphology: Laboratory Simulations of Cretaceous Stress
Biogeosciences Discuss., doi:10.5194/bg-2017-138, 2017 Manuscript under review for journal Biogeosciences Discussion started: 21 April 2017 c Author(s) 2017. CC-BY 3.0 License. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Giulia Faucher1, Linn Hoffmann2, Lennart T. Bach3, Cinzia Bottini1, Elisabetta Erba1, Ulf Riebesell3 1 Earth Sciences Department “Ardito Desio”, Università degli Studi di Milano, Milan, Italy 5 2 Department of Botany, University of Otago, Dunedin, New Zealand 3 Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany Correspondence to: Giulia Faucher ([email protected]) 10 Abstract. The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification process in past oceans. In order to verify this hypothesis, we explored the potential effect of a 15 mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. These taxa are phylogenetically linked to the Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interaction with living coccolithophores algae. 20 Our laboratory experiments demonstrated that elevated trace metal concentrations not only affect coccolithophore algae production but, similarly to the fossil record, coccolith size and/or weight. -
Respiratory Health Effects of Volcanic Ash with Special Reference To
The Clinical Respiratory Journal REVIEW ARTICLE Respiratory health effects of volcanic ash with special reference to Iceland. A reviewcrj_231 2..9 Gunnar Gudmundsson1,2 1 Landspitali University Hospital, Reykjavik, Iceland 2 Faculty of Medicine, University of Iceland, Reykjavik, Iceland Abstract Key words Background and Aims: Volcano eruptions occur around the world and can have an health – respiratory – review – volcanic ash – impact on health in many ways both locally and on a global scale as a result of volcanic gases airborne dispersion of gases and ash or as impact on climate. In this review, a recent Correspondence volcanic eruption in Eyjafjallajökull in Iceland is described and its effects on avia- Gunnar Gudmundsson, MD, PhD, Department tion around the globe and on respiratory health in those exposed to the volcanic of Respiratory Medicine, Allergy and Sleep, ash in Iceland. Also, the effects of a large volcano eruption in Iceland in 1789 are Landspitali-University Hospital, E-7 Fossvogur, described that also had effect on a global scale by causing air pollution. IS-108 Methods and Results: The available studies reviewed here suggest that the acute Reykjavik, Iceland. and chronic health effects of volcanic ash depend on particle size (how much Tel: +354-5436876 Fax: +354-5436568 respirable), mineralogical composition (crystalline silica content) and the physico- email: [email protected] chemical properties of the surfaces of ash particles. These can vary between volca- noes and even between eruptions, making comparison difficult. Acute respiratory Received: 05 October 2010 symptoms suggesting asthma and bronchitis have been well described. Exacerba- Revision requested: 17 October 2010 tions of pre-existing lung and heart disease are common after inhalation of volcanic Accepted: 20 October 2010 ash. -
Large-Scale Weather Patterns Favorable for Volcanic Smog Occurrences on O’Ahu, Hawai’I
Air Qual Atmos Health DOI 10.1007/s11869-017-0502-z Large-scale weather patterns favorable for volcanic smog occurrences on O’ahu, Hawai’i Kristine Tofte1 & Pao-Shin Chu1 & Gary M. Barnes1 Received: 2 April 2017 /Accepted: 6 August 2017 # Springer Science+Business Media B.V. 2017 Abstract Kīlauea Volcano, located on the Island of Hawai’i, Keywords Atmospheric science . Synoptic patterns . Air released approximately 3700 t of sulfur dioxide (SO2) per day quality . Pollution . Volcanic smog . Volcanic activity . Health from April 2009 through 2014. Within the atmosphere, SO2 is oxidized and converted to sulfuric-acid aerosols, and this vol- canic smog is commonly referred to as vog. This study focus- Introduction es on large-scale weather patterns that bring vog to O’ahu. The Hawai’i State Department of Health PM2.5 measurements The Hawaiian archipelago should have some of the cleanest were used to identify elevated vog conditions, and a total of air in the world because of its location in the mid-ocean. 101 vog days were found. European Centre for Medium- However, the air quality is occasionally poor because of vol- Range Weather Forecasts ERA-Interim reanalysis data were canic smog (vog) emanating from Kīlauea Volcano which is used to determine weather patterns. These 101 vog days were located on the southeast corner of the Island of Hawai’i, also the result of 57 distinct vog events lasting from 3 h up to known as the Big Island (Fig. 1). 4 days. The 57 events were further categorized into three Kīlauea Volcano started erupting continuously in 1983, large-scale weather patterns: pre-cold fronts (37 cases), mainly from the Pu u Ōō vent located on the East Rift upper-level disturbances (17 cases), and Kona lows (3 cases). -