Chemical Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Ecology Proc. Natl. Acad. Sci. USA Vol. 92, pp. 75-82, January 1995 Colloquium Paper This paper was presented at a coUoquium entitled "Chemical Ecology: The Chemistry ofBiotic Interaction, " organized by a committee chaired by Jerrold Meinwald and Thomas Eisner, held March 25 and 26, 1994, at the National Academy of Sciences, Washington, DC. Chemical ecology: A view from the pharmaceutical industry (molecular evolution/natural product screens/scaffold/genetic code/combinatorial chemistry) LYNN HELENA CAPORALE Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065 ABSTRACT Biological diversity reflects an underlying ulcers, and many bacterial infections (for examples, see ref. 1). molecular diversity. The molecules found in nature may be For other devastating diseases, such as diabetes, cancer, AIDS, regarded as solutions to challenges that have been confronted stroke, and Alzheimer disease, at best only inadequate therapy and overcome during molecular evolution. As our understand- is available; new approaches to treat these diseases are sought ing ofthese solutions deepens, the efficiency with which we can intensively by researchers within the pharmaceutical industry discover and/or design new treatments for human disease and elsewhere. In the future, new infectious agents may be grows. Nature assists our drug discovery efforts in a variety expected to emerge as important threats, much as human ofways. Some compounds synthesized by microorganisms and immunodeficiency virus (HIV) has challenged us. Because of plants are used directly as drugs. Human genetic variations the magnitude of these challenges, we continue to seek to that predispose to (or protect against) certain diseases may improve the strategies by which we discover new drugs. point to important drug targets. Organisms that manipulate molecules within us to their benefit also may help us to Most of the effort to create and discover medicinal mole- recognize key biochemical control points. Drug design efforts cules occurs in the research laboratories of the pharmaceutical are expedited by knowledge ofthe biochemistry ofa target. To industry. Drug discovery demands a coordinated effort among supplement this knowledge, we screen compounds from people with diverse talents. Researchers who elucidate disease sources selected to maximize molecular diversity. Organisms mechanisms (which point to macromolecules that would make known to manipulate biochemical pathways of other organ- good drug discovery targets) work with those skilled in iso- isms can be sources of particular interest. By using high lating or synthesizing new molecules and with those who can throughput assays, pharmaceutical companies can rapidly determine the safety and effectiveness of these molecules. scan the contents of tens of thousands of extracts of micro- Pharmaceutical company researchers begin the search for organisms, plants, and insects. A screen may be designed to clues to the type of molecules that, for example, inhibit a search for compounds that affect the activity of an individual targeted enzyme, by testing diverse structures in their com- targeted human receptor, enzyme, or ion channel, or the pound collections. These collections consist of compounds screen might be designed to capture compounds that affect synthesized previously in the course of other research pro- any step in a targeted metabolic or biochemical signaling grams. Discovery is optimized by scanning as wide a range of pathway. While a natural product discovered by such a screen structural types as possible (within resource constraints), will itself only rarely become a drug (its potency, selectivity, including compounds found in nature. bioavailability, and/or stability may be inadequate), it may Drug discovery has benefited significantly from the study of suggest a type of structure that would interact with the target, compounds that organisms have evolved for their own pur- serving as a point of departure for a medicinal chemistry poses. All of the drugs discovered at the Merck Research effort-i.e., it may be a "lead." It is still beyond our capability Laboratories that became available to patients in the last to design, routinely, such lead structures, based simply upon decade emerged from programs that benefited from knowl- knowledge of the structure of our target. However, if a drug edge of biological diversity. Some drugs were discovered via discovery target contains regions of structure homologous to natural product screens (2, 3). Others emerged from medicinal that in other proteins, structures known to interact with those chemistry efforts that drew on knowledge such as how the proteins may prove useful as leads for a medicinal chemistry venom of a Brazilian viper lowers blood pressure (4-6). effort. The specificity of a lead for a target may be optimized Another program was inspired by a human genetic variation by directing structural variation to specificity-determining that indicated that a particular enzyme would be a good drug sites and away from those sites required for interaction with target (7). conserved features of the targeted protein structure. Strate- gies that facilitate recognition and exploration of sites at Selection of Drug Discovery Targets which variation is most likely to generate a novel function increase the efficiency with which useful molecules can be A key step in the process of selecting a molecular target for a created. drug discovery program involves a demonstration that altering the activity of the proposed target should affect the disease. This is illustrated by the choice of the HIV protease as a target. Drug Discovery and Its Relationship to Chemical Ecology When the HIV genome was sequenced, Asp-Thr-Gly was recognized, based on previous work with other organisms, as Effective medical treatments are available for many diseases. a sequence found in aspartyl proteases. Viral-encoded pro- Recent discoveries include drugs that treat hypertension, teases are known to free active proteins from a viral polypro- tein precursor. Therefore, it was considered possible that The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in Abbreviations: HIV, human immunodeficiency virus; HMG, hy- accordance with 18 U.S.C. §1734 solely to indicate this fact. droxymethylglutaryl. 75 Downloaded by guest on September 24, 2021 76 Colloquium Paper: Caporale Proc. Natl. Acad Sci USA 92 (1995) inactivating the proposed HIV aspartyl protease might prevent isolation and characterization of unstable molecules present in the formation of viable virus and, thus, that the HIV protease minute quantities in source organisms, such as the potent would be an important target for a drug discovery effort (8). broad-spectrum antibiotic thienamycin (3). To test this hypothesis, a genetic approach was taken to As our understanding of biology deepens, we are increas- inactivate the aspartyl protease, changing the proposed active ingly able to select (and obtain in sufficient quantities) a site Asp to Asn. This mutation did indeed inactivate the HIV specific protein target for a drug discovery effort (18). Iden- protease; further, mutant HIV, lacking an active protease, was tification of human genes that predispose to diseases of not viable (Fig. 1). With this proof of concept in hand, an complex etiology, such as Alzheimer disease (19), may provide intensive effort was mounted to find an HIV protease inhib- clues to biochemical sites of intervention. Thus, many future itor. This proof of concept has been reinforced as small therapies may be targeted to (i.e., discovered by screening molecule inhibitors of the HIV protease have subsequently against) not the most common human sequence at a locus but been found to block the spread of the virus in tissue culture (9). disease-associated alleles. Progress in cloning DNA has placed The search for inhibitors of the HIV protease began with in our hands an array of receptor subtypes and of isozymes. compounds that had been prepared during prior work to [For example, there are at least 14 human serotonin receptor inhibit related proteases, notably renin, an aspartyl protease subtypes (20).] Different receptor subtypes may couple the involved in blood pressure regulation (9, 10). While new action of the signaling ligand (which might be a hormone or a structures that inhibit the HIV protease have emerged from neurotransmitter) to different second messenger systems (e.g., natural product screens (11, 12) [one structure that inhibits activating adenyl cyclase or opening a potassium channel). aspartyl proteases, the statine moiety, had been discovered Subtypes typically have distinct tissue distribution (i.e., one bacterial natural before the emer- may be found in the brain, another in the heart, or both may through screening products be in the same region of the brain, but one may be postsynaptic gence of HIV (10)], the most significant advances in this of have come an extensive medicinal and the other presynaptic). Consequently, the effects drugs program through chemistry to activate or inhibit one can be effort that built upon prior work with aspartyl proteases. designed selectively subtype Inhibitors had to be found that other confined to a subset of the functions of the endogenous ligand. spared important pro- are to teases as A more difficult was to Many side effects of older drugs caused by binding (such renin). challenge one discover nontoxic molecules that are bioavailable and have a nontarget
Recommended publications
  • Fishing for Toxins
    000 - Applied Bio Systems Article 19/7/06 11:37 am Page 2 Fishing for Toxins ENVIRONMENTAL Professor Allan Cembella, Professor in the Faculty of Biology and Chemistry at the University of Bremen ANALYSIS and Head of Biological Sciences at the Alfred Wegener Institute. Email: [email protected] Abstract Researchers at the Alfred Wegener Institute (AWI) for Polar and Marine Research in Bremerhaven, Germany are applying advanced chemical and molecular biological technologies to answer ecological questions. They are analysing trace levels of natural bioactive substances in seawater and marine biotoxins produced by various phytoplankton (microalgae), bacteria and cyanobacteria (“blue- green algae”), trying to understand how these bioactive metabolites are produced and sequestered and what effects they have on the ecosystem. Allan Cembella, Professor in the Faculty of Biology and Chemistry at the University of Bremen and Head of Biological Sciences at AWI, describes how the division is using sophisticated chemical analytical technology, including liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and limited genomics approaches to define the genetic regulation of marine biotoxin production and eventually determine the distribution and functional ecology of these toxins in marine food webs. Introduction The Alfred Wegener Institute in Bremerhaven, named after the famous polar explorer and geomorphologist responsible for the continental drift theory, was established in 1980 as a research institute focusing primarily on the polar regions. Since then its mandate has enlarged to embrace other disciplines in marine and coastal research in temperate waters and global climate change studies. The Division of Biological Sciences at the Institute is involved in research on projects covering organismal biology, physiology and genetics, functional ecology, molecular biology, marine and natural products chemistry and, now, ecological chemistry - chemical aspects of biological and ecological processes and mechanisms.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • Disruption of Coniferophagous Bark Beetle (Coleoptera: Curculionidae: Scolytinae) Mass Attack Using Angiosperm Nonhost Volatiles: from Concept to Operational Use
    The Canadian Entomologist (2021), 153,19–35 Published on behalf of the doi:10.4039/tce.2020.63 Entomological Society of Canada ARTICLE Disruption of coniferophagous bark beetle (Coleoptera: Curculionidae: Scolytinae) mass attack using angiosperm nonhost volatiles: from concept to operational use Dezene P.W. Huber1* , Christopher J. Fettig2 , and John H. Borden3 1Faculty of Environment, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada, 2Pacific Southwest Research Station, United States Department of Agriculture Forest Service, 1731 Research Park Drive, Davis, California, 95618, United States of America, and 3JHB Consulting, 6552 Carnegie Street, Burnaby, British Columbia, V5B 1Y3, Canada *Corresponding author. Email: [email protected] (Received 24 June 2020; accepted 22 September 2020; first published online 13 November 2020) Abstract Although the use of nonhost plants intercropped among host crops has been a standard agricultural prac- tice for reducing insect herbivory for millennia, the use of nonhost signals to deter forest pests is much more recent, having been developed over the past several decades. Early exploratory studies with synthetic nonhost volatile semiochemicals led to targeted electrophysiological and trapping experiments on a variety of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) across three continents. This work disclosed a suite of antennally and behaviourally active nonhost volatiles, which are detected in common across a range of coniferophagous bark beetles. It also established the fact that dispersing bark and ambro- sia beetles detect nonhost signals while in flight and avoid nonhost trees without necessarily landing on them. Later work showed that groups of synthetic nonhost volatiles, sometimes combined with insect- derived antiaggregants, are effective in protecting individual trees and forest stands.
    [Show full text]
  • "Curing" of Nicotiana Attenuata Leaves by Small Mammals Does Not Decrease Nicotine Contents
    Western North American Naturalist Volume 63 Number 1 Article 15 1-31-2003 "Curing" of Nicotiana attenuata leaves by small mammals does not decrease nicotine contents Ian T. Baldwin Max-Planck Institute for Chemical Ecology, Jena, Germany Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Baldwin, Ian T. (2003) ""Curing" of Nicotiana attenuata leaves by small mammals does not decrease nicotine contents," Western North American Naturalist: Vol. 63 : No. 1 , Article 15. Available at: https://scholarsarchive.byu.edu/wnan/vol63/iss1/15 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 63(1), ©2003, pp. 114–117 “CURING” OF NICOTIANA ATTENUATA LEAVES BY SMALL MAMMALS DOES NOT DECREASE NICOTINE CONTENTS Ian T. Baldwin1 ABSTRACT.—Basal leaves of Nicotiana attenuata are frequently found neatly excised at the petiole and piled on rocks or soil in the sun until dry, after which they disappear, sometimes to be found again in the nests of Neotoma lepida. In response to herbivore attack, N. attenuata increases the concentration of nicotine in its leaves, where it functions as an induced defense. Since excision of leaves at the petiole allows for leaf removal without substantially activating this induced defense, and air-drying at high temperatures can volatilize nicotine, we examined the hypothesis that the observed leaf “curing” behavior decreased nicotine contents.
    [Show full text]
  • Chemical Ecology Example 1. Pyrrolizidine Alkaloids (Pas)
    Alkaloids Part 2 Chemical Ecology p. 1 Alkaloids Part 2: Chemical Ecology Example 1. Pyrrolizidine Alkaloids (PAs) - Senecionine-N-oxides Background - basic structural type, but many variations - occurrence in plants in Compositae, Boragincaceae, Orchidaceae - extremely toxic to both mammals and insects but complex interactions - documented co-evolution with specialist insects, and sophisticated use of plant defenses by insects Biosynthesis Senecionine-N-oxide synthesized from two separate pathways/moieties - necine moiety, from arginine via putrescine (decarboxylate, condense, cyclize) - dicarboxylic acid moiety, from isoleucine => both form the macrocyclic diester = senecionine - key enzyme: homospermine synthase. Evolved independently at least four time - different plant families - from deoxyhypusine synthase, and enzyme of primary metabolism (activates eukaryotic translation initiation factor eIF5A) - five distinct structural types, that vary in macrocyclic diester bridge component Pyrrolizidine alkaloid localization and transport - root synthesis of senecionine, then transported to shoot - final accumulation of alkaloids is in flowers and shoot apex - further biochemical elaboration and structural diversification (decoration of macrocycle) occurs in shoot - population differentiation (diverse mixtures of pyrrolizidine alkaloids in different plant populations) - > variable target for pests. Pyrrolizidine Alkaloid Toxicity and its Avoidance - PA-containing plants are generally avoided by herbivores ( bitter taste, toxicity) - N-oxide
    [Show full text]
  • The Lost Origin of Chemical Ecology in the Late 19Th Century
    The lost origin of chemical ecology in the late SPECIAL FEATURE 19th century Thomas Hartmann* Institut fu¨r Pharmazeutische Biologie der Technischen Universita¨t Braunschweig, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved November 11, 2007 (received for review September 28, 2007) The origin of plant chemical ecology generally dates to the late reasons for hundreds of years can be attributed to secondary 1950s, when evolutionary entomologists recognized the essential metabolites. role of plant secondary metabolites in plant–insect interactions and Entomologists in the middle of the 20th century were the first to suggested that plant chemical diversity evolved under the selec- rediscover the importance of secondary metabolites in plants’ tion pressure of herbivory. However, similar ideas had already interactions with their environment. They emphasized the crucial flourished for a short period during the second half of the 19th role of secondary metabolites in host plant selection of herbivorous century but were largely forgotten by the turn of the century. This insects. In his classic paper, Gottfried Fraenkel (1) pointed out that article presents the observations and studies of three protagonists secondary metabolites in plants function to repel or attract herbiv- of chemical ecology: Anton Kerner von Marilaun (1831–1898, orous insects. In the 1960s the newly reemerging field of chemical Innsbruck, Austria, and Vienna, Austria), who mainly studied the ecology began to prosper as the importance of plant secondary impact of geological, climatic, and biotic factors on plant distribu- metabolites in the interactions of plants with their environment was tion and survival; Le´o Errera (1858–1906, Brussels, Belgium), a plant grounded in measurement and observations (2).
    [Show full text]
  • Chemical Encoding of Risk Perception and Predator Detection Among Estuarine Invertebrates
    Chemical encoding of risk perception and predator detection among estuarine invertebrates Remington X. Poulina,b, Serge Lavoieb,c, Katherine Siegeld, David A. Gaula, Marc J. Weissburgb,c, and Julia Kubaneka,b,c,e,1 aSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332; bAquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA 30332; cSchool of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332; dSchool of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332; and eInstitute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332 Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved November 29, 2017 (received for review August 8, 2017) An effective strategy for prey to survive in habitats rich in predators aquatic systems, the receptors that mediate chemoreception and is to avoid being noticed. Thus, prey are under selection pressure to recognition of these cues, and the specificity to these cues, necessi- recognize predators and adjust their behavior, which can impact tating further research. numerous community-wide interactions. Many animals in murky One explanation for the lack of characterized waterborne cues is and turbulent aquatic environments rely on waterborne chemical that purification methodologies for highly water-soluble compounds cues. Previous research showed that the mud crab, Panopeus herb- have been unsatisfactory, especially when working with seawater stii, recognizes the predatory blue crab, Callinectus sapidus,viaacue samples that contain substantial quantities of inorganic salts. Stan- in blue crab urine. This cue is strongest if blue crabs recently preyed dard sampling methods for airborne chemical cues such as head- upon mud crabs.
    [Show full text]
  • Phycotoxins by Harmful Algal Blooms (HABS) and Human Poisoning: an Overview
    International Clinical Pathology Journal Review Article Open Access Phycotoxins by harmful algal blooms (HABS) and human poisoning: an overview Abstract Volume 2 Issue 6 - 2016 Phycotoxins are potent natural toxins synthesized by certain marine algae and cyanobacteria species during “Harmful Algal Blooms”, (HABs), often seen as water Olga M Pulido discoloration known as “Red Tides”, “Green Tides”. They are grouped by chemical Department of Pathology and Laboratory Medicine, University structure, mechanisms of action, target tissues, biological and health effects. A of Ottawa, Canada constant threat to public health, and economy, environmental contaminants in aquatic ecosystems, seafood, drinking water, requiring multidisciplinary action at the local Correspondence: Olga M Pulido, Department of Pathology and international level to manage their potentially harmful effects. The 2015 bloom of and Laboratory Medicine, University of Ottawa, Ottawa, toxigenic Pseudo-nitzschia along the west coast of North America resulted in domoic Ontario, Canada, Email [email protected] acid contamination of crab and clams, numerous harvesting closures and Consumer Received: September 21, 2016 | Published: September 26, Warning issued by local public health authorities. Thereafter, in September 2016 the 2016 Oregon coast was closed to razor clam and mussel harvesting. Whereas, the massive cyanobacteria blooms reported in Florida in June 2016 lead to banning drinking water in some locations. Public health vigilance, monitoring, and research need to be maintained and enhanced. Despite scientific advancements, phycotoxin research relating to human exposure and health consequences are sparse, while, blooms of toxigenic species have become more prevalent worldwide. At present, phycotoxins poisonings diagnosis and management is largely based on the ability of health care provider to interpret presenting clinical symptoms, collect exposure history, identify and establish the exposure event.
    [Show full text]
  • Chemical Ecology = Chemistry + Ecology!*
    Pure Appl. Chem., Vol. 79, No. 12, pp. 2305–2323, 2007. doi:10.1351/pac200779122305 © 2007 IUPAC Chemical ecology = chemistry + ecology!* Gunnar Bergström‡ Chemical Ecology, Göteborg University, Kolonigatan 3, SE-41321 Göteborg, Sweden Abstract: Chemical ecology (CE) is an active, interdisciplinary field between chemistry and biology, which, stimulated by natural curiosity and possible applied aspects, has grown to its present position during the last 40-odd years. This area has now achieved a degree of matu- rity with its own journals, its own international society with annual meetings, and many en- thusiastic scientists in laboratories around the world. The focus is on chemical communica- tion and other chemical interactions between organisms, including volatile chemical signals, which guide behaviors linked to various vital needs. It reflects both biodiversity and chemodiversity. All living organisms have these important signal systems, which go back to the origins of life. Successful work in this area has called for close collaboration between chemists and biologists of different descriptions. It is thus a good example of chemistry for biology. The aim of the article is to give a short introduction to the field, with an emphasis on the role of chemistry in a biological context by • giving an overview of the development of the area; • showing some examples of studies of chemical communication in insects and plants, basically from our own work; and • describing some current trends and tendencies and possible future developments. Keywords: chemical ecology; chemistry; ecology; interdisciplinary field; insects; plants; be- haviors; pheromones; chemical signals; semiochemicals. CHEMICAL ECOLOGY—AN INTERDISCIPLINARY SCIENCE: HOW DID IT COME ABOUT? Females of the great peacock moth, Saturnia pyri, attract males from far away, several hundred meters.
    [Show full text]
  • Tolerance and Sequestration of Macroalgal Chemical Defenses by an Antarctic Amphipod: a ‘Cheater’ Among Mutualists
    Vol. 490: 79–90, 2013 MARINE ECOLOGY PROGRESS SERIES Published September 17 doi: 10.3354/meps10446 Mar Ecol Prog Ser FREEREE ACCESSCCESS Tolerance and sequestration of macroalgal chemical defenses by an Antarctic amphipod: a ‘cheater’ among mutualists Margaret O. Amsler1, Charles D. Amsler1,*, Jacqueline L. von Salm2, Craig F. Aumack1,3, James B. McClintock1, Ryan M. Young2, Bill J. Baker2 1Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA 2Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA 3Present address: Department of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Palisades, New York 10964-8000, USA ABSTRACT: Shallow-water communities along the western Antarctic Peninsula support forests of large, mostly chemically defended macroalgae and dense assemblages of macroalgal-associated amphipods, which are thought to exist together in a community-wide mutualism. The amphipods benefit the chemically defended macrophytes by consuming epiphytic algae and in turn benefit from an associational refuge from fish predation. In the present study, we document an exception to this pattern. The amphipod Paradexamine fissicauda is able to consume Plocamium carti- lagineum and Picconiella plumosa, 2 species of sympatric, chemically defended red macroalgae. In previous studies, Plocamium cartilagineum was one of the most strongly deterrent algae in the community to multiple consumers, and was found here to be unpalatable to 5 other amphipod spe- cies which utilize it as a host in nature. Paradexamine fissicauda maintained on a diet of Ploca - mium cartilagineum for 2 mo were much less likely to be eaten by fish than Paradexamine fissi- cauda maintained on a red alga which does not elaborate chemical defenses, or than a different but morphologically similar sympatric amphipod species.
    [Show full text]
  • Chapter 6 Chemical Cues That Indicate Risk of Predation
    Chapter 6 Chemical Cues That Indicate Risk of Predation Brian D. Wisenden Minnesota State University Moorhead, Moorhead, Minnesota, USA 6.1 INTRODUCTION Chemical cues released passively as a by-product of ecological interactions provide a rich and reliable source of public information to guide behavioral decision-making. Predation is an omnipresent and unforgiving agent of selection that is reliably correlated with context-specific chemical cues. Consequently, natural selection has led fish to evolve finely tuned mechanisms to first detect chemical information about predation risk and then execute adaptive behavioral responses to minimize exposure to these risks. The regular interval of reviews of this topic (Smith, 1992; Chivers and Smith, 1998; Wisenden, 2003; Wisenden and Stacey, 2005; Wisenden and Chivers, 2006; Ferrari, Wisenden, and Chivers, 2010; Chivers, Brown, and Ferrari, 2013) reflects the pace and volume of new research on how fish and other aquatic animals use chemical information to ameliorate predation risk. In this chapter, the principal sources of chemical information about predation risk and the large and active literature on how injury-released chemical alarm cues from conspecifics mediate these interactions are briefly reviewed. Alarm cues are chemicals released by cells and tissues of prey dam- aged in the process of a predator attack. Because alarm cues are released only in the context of predation, they reliably inform nearby receivers of the presence of an actively foraging predator. Thus, there is strong selection on receivers to elaborate mechanisms to detect and discern the quality of this information and to respond accordingly. I focus on these interactions because conspecific chemical alarm cues are the class of compounds and mixtures that come closest to the concept of pheromone.
    [Show full text]
  • Sensorialidad Vibratoria En Tabaco: Respuestas Químicas Y Efectos Sobre La Producción Foliar
    SENSORIALIDAD VIBRATORIA EN TABACO: RESPUESTAS QUÍMICAS Y EFECTOS SOBRE LA PRODUCCIÓN FOLIAR Tesis Entregada a la Universidad de Chile en Cumplimiento parcial de los requisitos para optar al grado de Magíster en Ciencias Biológicas Facultad de Ciencias Por: Daniel Torrico Bazoberry Director de Tesis: Dr. Hermann M. Niemeyer Co-director de Tesis: Dr. Carlos F. Pinto Santiago, Noviembre 2018 FACULTAD DE CIENCIAS UNIVERSIDAD DE CHILE INFORME DE APROBACIÓN TESIS DE MAGÍSTER Se informa a la Escuela de Postgrado de la Facultad de Ciencias que la Tesis de Magíster presentada por el candidato: Daniel Torrico Bazoberry Ha sido aprobada por la comisión de Evaluación de la tesis como requisito para optar al grado de Magíster en Ciencias Biológicas, en el examen de Defensa Privada de Tesis rendido el día 12 de octubre de 2018. Director de Tesis: Dr. Hermann M. Niemeyer ................. Co-Director de Tesis: Dr. Carlos F. Pinto ................. Comisión de Evaluación de la Tesis: Dr. Carezza Botto ................. Dr. Ramiro Bustamante ................. A mis padres, por su cariño y apoyo constante e incondicional ii BIOGRAFÍA Nací en Cochabamba, la capital gastronómica de Bolivia, el año 1991. Desde muy pequeño tuve un gran interés en ser científico, sin siquiera saber en ese entonces las labores que uno desarrollaba. A los 17 años ingresé a la carrera de Biología en la Universidad Mayor de San Simón, donde obtuve mi título el año 2014. Mi tesis de grado fue evaluar la selección natural en rasgos morfológicos en mi insecto favorito Alchisme grossa. El año 2011 pude conocer el área de la Ecología Química y gracias a LANBIO tuve la oportunidad de tener cursos tanto en Bolivia como en Chile; además, pude realizar dos pasantías en el Laboratorio de Química Ecológica de la Universidad de Chile: la primera el año 2012 y la segunda el año 2014.
    [Show full text]