Revised Survey for Special-Status Vascular Plant Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Survey for Special-Status Vascular Plant Species
SURVEY FOR SPECIAL-STATUS VASCULAR PLANT SPECIES For the proposed Eagle Canyon Fish Passage Project Tehama and Shasta Counties, California Prepared for: Tehama Environmental Solutions 910 Main Street, Suite D Red Bluff, California 96080 Prepared by: Dittes & Guardino Consulting P.O. Box 6 Los Molinos, California 96055 (530) 384-1774 [email protected] Eagle Canyon Fish Passage Improvement Project - Botany Report Sept. 12, 2018 Prepared by: Dittes & Guardino Consulting 1 SURVEY FOR SPECIAL-STATUS VASCULAR PLANT SPECIES Eagle Canyon Fish Passage Project Shasta & Tehama Counties, California T30N, R1W, SE 1/4 Sec. 25, SE1/4 Sec. 24, NE ¼ Sec. 36 of the Shingletown 7.5’ USGS Topographic Quadrangle TABLE OF CONTENTS I. Executive Summary ................................................................................................................................................. 4 II. Introduction ............................................................................................................................................................ 4 III. Project Description ............................................................................................................................................... 4 IV. Location .................................................................................................................................................................. 5 V. Methods .................................................................................................................................................................. -
Analysis of the Giant Genomes of Fritillaria (Liliaceae) Indicates That a Lack of DNA Removal Characterizes Extreme Expansions in Genome Size
CORE Metadata, citation and similar papers at core.ac.uk Provided by Queen Mary Research Online Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. Kelly, LJ; Renny-Byfield, S; Pellicer, J; Macas, J; Novák, P; Neumann, P; Lysak, MA; Day, PD; Berger, M; Fay, MF; Nichols, RA; Leitch, AR; Leitch, IJ © 2015 The Authors. CC-BY For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/8496 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Research Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size Laura J. Kelly1,2, Simon Renny-Byfield1,3, Jaume Pellicer2,Jirı Macas4, Petr Novak4, Pavel Neumann4, Martin A. Lysak5, Peter D. Day1,2, Madeleine Berger2,6,7, Michael F. Fay2, Richard A. Nichols1, Andrew R. Leitch1 and Ilia J. Leitch2 1School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK; 2Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK; 3 4 Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA; Biology Centre CAS, Institute of Plant Molecular Biology, CZ-37005, Ceske Budejovice, Czech Republic; 5Plant Cytogenomics Research Group, CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic; 6School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; 7Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK Summary Authors for correspondence: Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the Laura J. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
How Many of Cassini Anagrams Should There Be? Molecular
TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group. -
Imperata Cylindrica) Populations in Mississippi
Invasive Plant Science and Management 2010 3:199–207 Review Ecotype Variability and Edaphic Characteristics for Cogongrass (Imperata cylindrica) Populations in Mississippi Charles T. Bryson, L. Jason Krutz, Gary N. Ervin, Krishna N. Reddy, and John D. Byrd, Jr.* Cogongrass is a highly invasive, perennial grass that is found on all continents, except Antarctica. It continues to spread at an alarming rate in the southeastern United States. Cogongrass has been reported from a wide array of habitats; however, soils from areas where cogongrass grows have never been characterized. Live cogongrass plants, herbarium specimens, and soil samples were collected from 53 cogongrass populations from across the 10 physiographic regions and land use areas in Mississippi. Cogongrass leaf and inflorescence morphology varied among sites, and plants were found in soils varying widely in texture (ranging from 28 to 86% sand, 3 to 48% silt, and 6 to 43% clay), organic matter content (ranging from 0.9 to 5.0%), pH (ranging from 4.4 to 8.0), and nutrient status: 6 to 190 kg ha21 (15 to 470 lb A21) of phosphorus (P), 46 to 734 kg ha21 of potassium (K), 150 to 7,620 kg ha21 of calcium (Ca), 26 to 1,090 kg ha21 of magnesium (Mg), 1 to 190 kg ha21 of zinc (Zn), 145 to 800 kg ha21 of estimated sulfur (S) based on organic matter, and 57 to 300 kg ha21 of sodium (Na). These soil parameters were highly variable among cogongrass populations, even within physiographic regions or land use areas, and encompassed much of the soil physiochemical diversity within the state. -
Botanical Resources and Wetlands Technical Report
Chapter 1 Affected Environment Figure 1-3g. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-45 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-46 Draft – June 2013 Chapter 1 Affected Environment Figure 1-3h. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-47 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-48 Draft – June 2013 Chapter 1 Affected Environment Figure 1-3i. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-49 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-50 Draft – June 2013 Chapter 1 Affected Environment Figure 1-3j. Sensitive Biological Resources Between Shasta Dam and Red Bluff Pumping Plant 1-51 Draft – June 2013 Shasta Lake Water Resources Investigation Biological Resources Appendix – Botanical Resources and Wetlands Technical Report This page left blank intentionally. 1-52 Draft – June 2013 Chapter 1 Affected Environment 1 Valley Oak Woodland This habitat type consists of an open savanna of 2 valley oak (Quercus lobata) trees and an annual grassland understory. Valley 3 oak is typically the only tree species present and shrubs are generally absent 4 except for occasional poison oak. Canopy cover rarely exceeds 30–40 percent in 5 valley oak woodland. This community occupies the highest portions of the 6 floodplain terrace where flooding is infrequent and shallow. -
Benton County Prairie Species Habitat Conservation Plan
BENTON COUNTY PRAIRIE SPECIES HABITAT CONSERVATION PLAN DECEMBER 2010 For more information, please contact: Benton County Natural Areas & Parks Department 360 SW Avery Ave. Corvallis, Oregon 97333-1192 Phone: 541.766.6871 - Fax: 541.766.6891 http://www.co.benton.or.us/parks/hcp This document was prepared for Benton County by staff at the Institute for Applied Ecology: Tom Kaye Carolyn Menke Michelle Michaud Rachel Schwindt Lori Wisehart The Institute for Applied Ecology is a non-profit 501(c)(3) organization whose mission is to conserve native ecosystems through restoration, research, and education. P.O. Box 2855 Corvallis, OR 97339-2855 (541) 753-3099 www.appliedeco.org Suggested Citation: Benton County. 2010. Prairie Species Habitat Conservation Plan. 160 pp plus appendices. www.co.benton.or.us/parks/hcp Front cover photos, top to bottom: Kincaid’s lupine, photo by Tom Kaye Nelson’s checkermallow, photo by Tom Kaye Fender’s blue butterfly, photo by Cheryl Schultz Peacock larkspur, photo by Lori Wisehart Bradshaw’s lomatium, photo by Tom Kaye Taylor’s checkerspot, photo by Dana Ross Willamette daisy, photo by Tom Kaye Benton County Prairie Species HCP Preamble The Benton County Prairie Species Habitat Conservation Plan (HCP) was initiated to bring Benton County’s activities on its own lands into compliance with the Federal and State Endangered Species Acts. Federal law requires a non-federal landowner who wishes to conduct activities that may harm (“take”) threatened or endangered wildlife on their land to obtain an incidental take permit from the U.S. Fish and Wildlife Service. State law requires a non-federal public landowner who wishes to conduct activities that may harm threatened or endangered plants to obtain a permit from the Oregon Department of Agriculture. -
Epipactis Gigantea Dougl
Epipactis gigantea Dougl. ex Hook. (stream orchid): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project March 20, 2006 Joe Rocchio, Maggie March, and David G. Anderson Colorado Natural Heritage Program Colorado State University Fort Collins, CO Peer Review Administered by Center for Plant Conservation Rocchio, J., M. March, and D.G. Anderson. (2006, March 20). Epipactis gigantea Dougl. ex Hook. (stream orchid): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http: //www.fs.fed.us/r2/projects/scp/assessments/epipactisgigantea.pdf [date of access]. ACKNOWLEDGMENTS This research was greatly facilitated by the helpfulness and generosity of many experts, particularly Bonnie Heidel, Beth Burkhart, Leslie Stewart, Jim Ferguson, Peggy Lyon, Sarah Brinton, Jennifer Whipple, and Janet Coles. Their interest in the project, valuable insight, depth of experience, and time spent answering questions were extremely valuable and crucial to the project. Nan Lederer (COLO), Ron Hartman, Ernie Nelson, Joy Handley (RM), and Michelle Szumlinski (SJNM) all provided assistance and specimen labels from their institutions. Annette Miller provided information for the report on seed storage status. Jane Nusbaum, Mary Olivas, and Barbara Brayfield provided crucial financial oversight. Shannon Gilpin assisted with literature acquisition. Many thanks to Beth Burkhart, Janet Coles, and two anonymous reviewers whose invaluable suggestions and insight greatly improved the quality of this manuscript. AUTHORS’ BIOGRAPHIES Joe Rocchio is a wetland ecologist with the Colorado Natural Heritage Program where his work has included survey and assessment of biologically significant wetlands throughout Colorado since 1999. Currently, he is developing bioassessment tools to assess the floristic integrity of Colorado wetlands. -
Vascular Plants of Vina Plains Preserve Wurlitzer Unit
DO r:r:i :;:i·,iOVE Ff.'f)l,1 . ,- . - . "'I":; Vascular Plants of Vina Plains Preserve, Wurlitzer Unit Vernon H. Oswald Vaseular Plants of Vina Plains Preserve, Wurlitzer Unit Vernon H . Oswald Department of Biological Sciences California State University, C h ico Ch ico, California 95929-0515 1997 Revision RED BLUFF •CORN ING TEHAMA CO. -------------B1JITECO. ORLAND HWY 32 FIGURE I. Location of Vina P la.ins Preserve, Main Unit on the north, Wurlitzer Unit on the south. CONTENTS Figure 1. Location of Vina Plains Preserve ...... ................................. facing contents Figure 2. Wurlitzer Unit, Vina Plains Preserve ..... ............................... facing page I Introduction .. ... ..................................... ................................ ....... ....... ... ................ I References .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... ... .. .. .. .. .. .. .. .. .. .. 4 The Plant List: Ferns and fem allies .......... ................................................... ........... ................. 5 Di cot flowering plants ............... ...................................................... ................. 5 Monocot flowering plants .......... ..................................................................... 25 / ... n\ a: t, i. FIGURE 2. Wurlitzer Unit, Vina Plains Preserve (in yellow), with a small comer of the Main Unit showing on the north. Modified from USGS 7.5' topographic maps, Richardson Springs NW & Nord quadrangles. - - INTRODUCTION 1 A survey of the vascular flora of the Wurl itzer -
Taxonomic Monographs in Relation to Global Red Lists
51 February 2002: 155–158 Kirschner & Kaplan Red Lists and taxonomy BIODIVERSITY AND CONSERVATION Taxonomic monographs in relation to global Red Lists Jan Kirschner & denek Kaplan Department of Botany, Czech Academy of Sciences, CS-252 43 Pruhonice u Prahy, Czech Republic. kirsvh- [email protected] (author for correspondence); [email protected]. Upon comparison with recent monographs of Juncaceae and Potamogetonaceae, the 1997 IUCN Red List of Threatened Plants is shown to be an inadequate information source for conservation decisions. A substantial proportion of names listed in the IUCN RL represent synonyms, often belonging to widespread taxa, or remain doubtful taxonomically. If a new Red List is derived from the two new monographic accounts, and compared with the 1997 IUCN RL, the correct data from the latter represent 10–25% of the former. It may concluded that the overall accuracy of the IUCN list is rather low. The importance of global taxonomic monographs as a source of basic data for the accurate compilation of Red Lists is stressed. KEYWORDS: conservation, IUCN, Juncaceae, Potamogeonaceae, Red Lists, taxonomy. come from all over the world and cover the main diver- INTRODUCTION sity centres and complicated groups of the family. They Red lists (RLs) of threatened plants represent an are: Aaron Wilton (New Zealand), Adolf Ceska important information source for policy-makers and gov- (Canada), Barbara Ertter (California), Carmen Fernandez ernmental nature conservation authorities. Local and Carvajal (Spain), Futoshi Miyamoto (Japan), Henrik regional RLs use the IUCN criteria of classification of Balslev (Denmark), Henry Noltie (Scotland), Janice plants into categories of threat, and they are therefore Coffey-Swab (N. -
Vascular Plant Species with Documented Or Recorded Occurrence in Placer County
A PPENDIX II Vascular Plant Species with Documented or Reported Occurrence in Placer County APPENDIX II. Vascular Plant Species with Documented or Reported Occurrence in Placer County Family Scientific Name Common Name FERN AND FERN ALLIES Azollaceae Mosquito fern family Azolla filiculoides Pacific mosquito fern Dennstaedtiaceae Bracken family Pteridium aquilinum var.pubescens Bracken fern Dryopteridaceae Wood fern family Athyrium alpestre var. americanum Alpine lady fern Athyrium filix-femina var. cyclosorum Lady fern Cystopteris fragilis Fragile fern Polystichum imbricans ssp. curtum Cliff sword fern Polystichum imbricans ssp. imbricans Imbricate sword fern Polystichum kruckebergii Kruckeberg’s hollyfern Polystichum lonchitis Northern hollyfern Polystichum munitum Sword fern Equisetaceae Horsetail family Equisetum arvense Common horsetail Equisetum hyemale ssp. affine Scouring rush Equisetum laevigatum Smooth horsetail Isoetaceae Quillwort family Isoetes bolanderi Bolander’s quillwort Isoetes howellii Howell’s quillwort Isoetes orcuttii Orcutt’s quillwort Lycopodiaceae Club-moss family Lycopodiella inundata Bog club-moss Marsileaceae Marsilea family Marsilea vestita ssp. vestita Water clover Pilularia americana American pillwort Ophioglossaceae Adder’s-tongue family Botrychium multifidum Leathery grapefern Polypodiaceae Polypody family Polypodium hesperium Western polypody Pteridaceae Brake family Adiantum aleuticum Five-finger maidenhair Adiantum jordanii Common maidenhair fern Aspidotis densa Indian’s dream Cheilanthes cooperae Cooper’s -
Classification, Ecological Characterization, and Presence of Listed Plant Taxa of Vernal Pool Associations in California
Barbour et al.: Vernal pools Draft Final Report; May/07 1 FINAL REPORT, 15 May 2007 CLASSIFICATION, ECOLOGICAL CHARACTERIZATION, AND PRESENCE OF LISTED PLANT TAXA OF VERNAL POOL ASSOCIATIONS IN CALIFORNIA UNITED STATES FISH AND WILDLIFE SERVICE AGREEMENT/STUDY NO. 814205G238 UNIVERSITY OF CALIFORNIA, DAVIS ACCOUNT NO. 3-APSF026 , SUBACCOUNT NO. FMGB2 SUBMITTED BY: PROFESSOR MICHAEL G. BARBOUR PRINCIPAL INVESTIGATOR, DR. AYZIK I. SOLOMESHCH, MS. JENNIFER J. BUCK WITH CONTRIBUTIONS FROM: ROBERT F. HOLLAND CAROL W. WITHAM RODERICK L. MACDONALD SANDRA L. STARR KRISTI A. LAZAR Barbour et al.: Vernal pools Draft Final Report; May/07 2 TABLE OF CONTENTS: Executive summary 3 Chapter 1. Introduction 8 Structure of the report 10 Chapter 2. Classification of vernal pool plant communities 12 Previous classifications 12 Materials and methods 15 Results 18 Class Lastenia fremontii-Downingia bicornuta 18 Key to Central Valley communities 19 Descriptions of community types 20 Alliance Lasthenia glaberrima 20 Alliance Lupinus bicolor-Eryngium aristulatum 28 Alliance downingia bocornuta-Lasthenia fremontii 29 Alliance Layia fremontii-Achyrachaena mollis 34 Alliance Montia fontana-Sidalcea calycosa 35 Alliance Frankenia salina-Lasthenia fremontii 36 Alliance Cressa truxillensis-Distichlis spicata of playas and alkali sinks 44 Central Valley vernal pools in a California-wide context 48 Discussion 50 Chapter 3. Persistence of diagnostic species and community types 56 Chapter 4. Presence of listed plants in Central Valley communities 64 Results and duscussion