2016 Computational Mathematics Annual Program Review Arlington, VA (USA), August 8-11, 2016 EXPLICIT SOLUTIONS TO PHASE-CHANGE PROBLEMS AND APPLICATIONS Domingo Alberto Tarzia Grant AFOSR – SOARD FA 9550-14-1-0122 CONICET - Depto. Matemática, FCE, Univ. Austral, Paraguay 1950, S2000FZF Rosario, Argentina. E-mail:
[email protected] Key Words: Free boundary problems, Lamé-Clapeyron-Stefan problem, Phase-change problems, Heat- Diffusion equation, Fractional diffusion, Caputo fractional derivative, Explicit solutions, Neumann solution, Unknown thermal coefficients, Over-specified boundary condition, Mushy region, Convective boundary condition. Mathematics Subject Classification 2010: 26A33, 35C05, 35R11, 35R35, 80A22. 2 ABSTRACT We obtain explicit solutions (in a closed form) for the following one-dimensional phase- change problems: • Two-phase solidification process with a convective boundary condition (T. Thermal Sci (2016), In Press); • One-phase solidification process with a mushy region and a convective boundary condition (T., J. Appl. Math. (2015)); • One-phase solidification process with a mushy region and a heat flux boundary condition (T., J. Appl. Math. (2015)); • Determination of one unknown thermal coefficient through a solidification problem with an over-specified boundary condition (Ceretani-T., Math. Problems in Eng. (2015)); AFOSR - Comput. Math., Arlington (VA, USA), 8-11 August 2016 Tarzia, Explicit Solutions to Phase-Change Problems & Appl. 3 • Simultaneous determination of two unknown thermal coefficients through a solidification problem with an over-specified boundary condition (Ceretani-T., JP Journal Heat Mass Transfer (2016)); • Two-phase fractional Stefan problem with a temperature boundary condition (Roscani-T., Adv. Math. Sci. Appl. (2014)); • Two-phase fractional Stefan problem with a heat flux boundary condition (Roscani- T., In progress); • Determination of one unknown thermal coefficient through a one-phase fractional Stefan problem with an over-specified boundary condition (T.