Transactions of the Canadian Society for Mechanical Engineering Geometric Optimization of a Self-Adaptive Robotic Leg Journal: Transactions of the Canadian Society for Mechanical Engineering Manuscript ID TCSME-2017-0010.R1 Manuscript Type: Article Date Submitted by the Author: 16-Jan-2018 Complete List of Authors: Fedorov, Dmitri; Ecole Polytechnique de Montreal, Mechanical Engineering Birglen, Lionel; Ecole Polytechnique de Montreal, Mechanical Engineering Is the invited manuscript for consideration in a Special CCToMM 2017Draft Symposium Special Issue Issue? : Keywords: Underactuation, Linkage, Robotic Leg, Optimization, Planar Mechanism https://mc06.manuscriptcentral.com/tcsme-pubs Page 1 of 41 Transactions of the Canadian Society for Mechanical Engineering GEOMETRIC OPTIMIZATION OF A SELF-ADAPTIVE ROBOTIC LEG Dmitri Fedorov1, Lionel Birglen1 1Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada Email:
[email protected];
[email protected] Draft CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2017 1 https://mc06.manuscriptcentral.com/tcsme-pubs Transactions of the Canadian Society for Mechanical Engineering Page 2 of 41 ABSTRACT Inspired by underactuated mechanical fingers, this paper demonstrates and optimizes the self-adaptive capabilities of a 2-DOF Hoecken’s-Pantograph robotic leg allowing it to overcome unexpected obstacles en- countered during its swing phase. A multi-objective optimization of the mechanism’s geometric parameters is performed using a genetic algorithm to highlight the trade-off between two conflicting objectives and se- lect an appropriate compromise. The first of those objective functions measures the leg’s passive adaptation capability through a calculation of the input torque required to initiate the desired sliding motion along an obstacle.