Role of Point-Of-Care Ultrasonography in the Evaluation and Management

Total Page:16

File Type:pdf, Size:1020Kb

Role of Point-Of-Care Ultrasonography in the Evaluation and Management Role of Point-of-Care Ultrasonography in the Evaluation and Management of Kidney Disease Jorge Lamarche, MD; Alfredo Peguero Rivera, MD; Craig Courville, MD; Mohamed Taha, MD; Marina Antar-Shultz, DO; and Andres Reyes, MD Imaging at the nephrology point of care provides an important and continuously expanding tool to improve diagnostic accuracy in concert with history and physical examination. he evaluation of acute kidney injury protocols into the modified focused assess- Jorge Lamarche, Alfredo Peguero Rivera, Craig (AKI) often starts with the classic pre- ment with sonography for trauma (FAST) Courville, Mohamed Taha, Trenal, renal, and postrenal causalities, examination in conjunction with limited and Marina Antar-Shultz delineating a practical workable approach echocardiography and lung sonography (Fig- are Academic Nephrology in its differential diagnosis. Accordingly, the ure 1). The original FAST protocol was devel- Attending Physicians at the James A. Haley Veterans' history, physical examination, urinalysis, oped by the American Institute of Ultrasound Hospital and Assistant Pro- and kidney-bladder sonography are stan- in Medicine and the American College of fessors at the University of 3 dard resources in the initial approach to Emergency Physicians. South Florida Department of Nephrology and Hyper- renal disease assessment. Ultrasonography These protocols have allowed the evalu- tension, all in Tampa, Flor- has a well-established role as an important ation of extracellular volume, which is im- ida. At the time the article adjuvant for postrenal diagnosis of renal portant to measure for the diagnosis and was written Andres Reyes failure. Nevertheless, most of the causes of management of renal diseases. For example, was a Medical Fellow at the University of South Florida. AKI are prerenal and renal. the evaluation of lung water by POC ultra- Correspondence: Some etiologies of kidney injury are se- sonography for patients with ESRD is emerg- Jorge Lamarche quelae of systemic diseases in which sonog- ing as a promising tool. In a study of patients ([email protected]) raphy can be diagnostically analogous to the with ESRD undergoing hemodialysis, POC history and physical examination. Further- ultrasonography detected moderate-to-severe more, ultrasonography may be informative lung congestion in 45% of patients, most of in various clinical scenarios, for example, pa- whom (71%) were asymptomatic. Two years tients with chronic kidney disease (CKD) of follow-up of patients was associated with and end-stage renal disease (ESRD). In this 3 to 4 times greater risk of heart attack and narrative review, the contribution of point- death, respectively, compared with individ- of-care (POC) sonography to the evaluation uals without congestion on sonography.4-6 and management of AKI, CKD, and associ- Thus, ultrasound assessment of lung water ated diseases are explored beyond the tra- in patients with ESRD may prove to be an es- ditional sonogram uses for kidney biopsy, sential tool to assure an adequate ultrafiltra- central catheter placement, and/or screening tion and improve patient outcomes. of hydronephrosis. Two important elements made possible ACUTE KIDNEY INJURY the incorporation of POC sonography into Prerenal nephrology practice.1,2 First, the development The physical examination provides evaluation of handheld reliable and portable ultrasound of effective arterial circulatory flow (EACF) devices and, second, the derived capacity of and is clinically useful in the evaluation of POC sonography to obtain objective signs prerenal azotemia. The utility is more obvious of physiologic and/or pathophysiologic phe- in the extremes of EACF. However, in the case nomena. The latter clinical application is re- of blood volume losses of > 10% or the physi- alized through the incorporation of POC ologic equivalent, heart rate, blood pressure, mdedge.com/fedprac DECEMBER 2018 • FEDERAL PRACTITIONER • 27 Kidney Disease Management FIGURE 1 Acute Kidney Injury Assessment finding is that pulmonary hypertension may induce false-positive results.12,13 Hepatic vein dilation is another sign of HF and/or pulmonary hypertension. Furthermore, so- nographic images of the left ventricle either from the parasternal long axis or subxiphoid approach can identify supranormal left ven- tricular ejection fraction (LVEF) or hyper- dynamic heart as an important clue of the absolute or relative decrease of EACF.14 Con- versely, a decrease in EACF in patients with low LVEF can be assessed qualitatively at the bedside in patients with systolic HF. Support- ing evidence of prerenal azotemia as the re- sult of HF can be suggested by the presence of pleural effusions and bilateral comet/rock- ets tails or B lines in lung sonography.15 The easily recognizable hypoechoic ascitic Abbreviations: AGN, acute glomerulonephritis; AIN, acute interstitial nephritis; AKI, acute fluid in the presence of small, hyperechoic kidney injury; ATN, acute tubular necrosis; GU, genitourinary; IVC, inferior vena cava. gross changes in the echocardiographic tex- ture of liver may indicate a hepatorenal com- skin turgor, urinary output, and capillary re- ponent as the cause of prerenal failure. A fill may be within normal limits. Obvious small increase of > 20% in the diameter of the changes in these parameters during the phys- portal vein with deep inspiration indicates ical examination are considered relatively late portal hypertension, with a sensitivity of 80% manifestations.7-10 Therefore, prerenal fail- and a specificity of 100%.15,16 Other clini- ure is frequently diagnosed retrospectively cal scenarios leading to AKI in association after correction of the EACF through use of with systemic hypotension may be identi- crystalloids, blood products, vasopressors, fied quickly with the aid of POC sonography. inotropic agents, discontinuation of antihy- These scenarios include cardiac tampon- pertensive agents, or treatment of its prere- ade, tension pneumothorax, right ventricu- nal causes. Certain sonographic maneuvers, lar dysfunction (as a surrogate of pulmonary performed at the bedside during acute renal embolism), or an acute coronary event.16,17 injury, may be useful in many patients to eval- Alternatively, identifying the presence of se- uate a multitude of prerenal causes of AKI. vere left ventricular hypertrophy through Sonographic inferior vena cava (IVC) lu- POC ultrasonography in a patient with AKI minal diameter and inspiratory collapsibility and normal or low normal blood pressures together serve as a surrogate marker of pre- may alert clinicians to the diagnosis of nor- load venous return and right side heart func- motensive renal failure in individuals with tion. Such imaging results have been shown previously unrecognized severe hyperten- to be more accurate than jugular venous dis- sion. In this clinical context, keeping mean tension on physical examination but only arterial pressures higher than usual with va- modestly helpful as a surrogate for central sopressors may improve renal function while venous pressure (CVP), with more accuracy decreasing dialysis utilization.18-21 in the lower values of the CVP.11 However, Likewise, in clinical scenarios of shock this procedure can be repeated often after with AKI, POC ultrasonography has proven volume resuscitation to achieve a 1.5- to to be an indispensable tool. For example, 2.5-cm diameter dimension of the IVC and rapid exploration of the biliary tree dem- < 25% inspiratory collapsibility as a goal. onstrating anterior gallbladder wall thick- An IVC with a diameter > 2.5 cm in the ening, a stone or sludge, common bile duct context of a suspected prerenal AKI is more dilation, or perigallbladder inflammation likely the consequence of heart failure (HF) suggests acute cholecystitis and/or cholan- rather than hypovolemia. The caveat to this gitis as the cause. The presence of dyspnea 28 • FEDERAL PRACTITIONER • DECEMBER 2018 mdedge.com/fedprac Kidney Disease Management in association with hypoten- FIGURE 2 Sonograms of the Inferior Vena Cava Entering the Right sion and unilateral signs of a Atrium During (A) Inspiration and (B) Expiration (arrows) higher proportion of comet A B tails and/or a lung consoli- dation suggests pneumonia. Rapid differentiation be- tween acute respiratory dis- tress syndrome (ARDS) and pulmonary edema from HF is possible with ultrasonogra- phy. When pleural line abnor- malities are seen, ARDS is a common cause. POC ultrasonography will be key in management of ARDS, as ultrasound results will help avoid the use of ex- cessive diuretics, which can result in renal hypoperfusion and AKI.22 In trauma patients, the ultrasound examination will identify free ting and are an independent risk factor for fluid (bleeding) as the source of the prerenal poor survival in arterial hypertension and failure, along with its cause (aortic dissection, H F. 25-30 hepatic hemorrhage, splenic hemorrhage, ec- Other POC sonographic evaluations of topic pregnancy, etc).23 Sonographic free air intrinsic AKI have been helpful in the fol- observed in the abdomen can provide the lowing clinical scenarios. The presence of an clue of a perforated viscus.24 The sonographic ultrasonographic sign of sinusitis in the con- image of an inflamed pancreas can suggest text of nephritic sediment and a rapid decline pancreatitis as the cause of the systemic hypo- of renal function suggest antineutrophil cy- tension. Ultimately, intravascular losses in the toplasmic antibody (ANCA)-related vascu- hypoechoic edematous bowel wall
Recommended publications
  • UW Emergency Medicine Ultrasound Elective
    UW Emergency Medicine Ultrasound Elective Educational Objectives: • To become proficient at advanced point of care emergency ultrasound by: o Becoming proficient with image acquisition o Becoming proficient with image interpretation o Becoming more proficient at incorporation of ultrasound into clinical practice Rotation Goals: • Master skills of image acquisition and image interpretation for all 11 ACEP point of care emergency ultrasound indications (Trauma/FAST, ocular, biliary, renal, aorta, cardiac, thoracic, DVT, MSK, intrauterine pregnancy, procedural guidance) • Review and become familiar with current body of point of care ultrasound literature – the resident should critically review 5 recent journal articles involving ultrasound in clinical practice and discuss them with the ultrasound director • Understand how to incorporate point of care emergency ultrasound into clinical practice • Practice bedside ultrasound teaching skills with medical students currently rotating in the department • Focus particularly on advanced point of care ultrasound applications, including dedicated musculoskeletal, cardiopulmonary, and endovaginal sonography • Prepare a lecture for didactic conference on an advanced point of care ultrasound case of the month topic of your choosing with the assistance of the ultrasound director Clinical Experience: Time will be spent largely in performing ultrasounds in the emergency department. Plan to spend at least 5 hours per day on average, five days per week in the emergency department performing bedside point-of-care ultrasounds. All training exams must be performed under direct supervision of an ultrasound credentialed faculty or with a confirmatory study. The resident will focus on completing the ACEP’s credentialing requirement of 25 exams per indication (for all 11 indications, this is a total of 275 exams).
    [Show full text]
  • Overall Program Goals & Objectives
    Queen’s University Emergency Medicine Resident Handbook Overall Curriculum Goals and Objectives MEDICAL EXPERT ......................................................................................................... 2 ADMINISTRATION ........................................................................................................ 3 ANAESTHESIA ................................................................................................................ 4 COMMUNICATION SKILLS ......................................................................................... 5 CRITICAL CARE MEDICINE ....................................................................................... 6 DISASTER MEDICINE .................................................................................................. 7 ENVIRONMENTAL ILLNESS ....................................................................................... 8 eHEALTH AND TECHNOLOGY ................................................................................. 10 ETHICS AND THE LAW ............................................................................................. 11 GENDER AND CULTURAL ISSUES ........................................................................ 12 INTERNAL MEDICINE SPECIALTIES .................................................................... 13 Cardiology ......................................................................................................... 13 Endocrinology .................................................................................................
    [Show full text]
  • 10 Important Applications of Point-Of-Care Ultrasound In
    10 IMPORTANT APPLICATIONS OF POINT-OF-CARE ULTRASOUND IN PEDIATRIC EMERGENCY MEDICINE effective alternative to chest radiography.[32] During the 2009 H1N1 examination nding of a palpable “olive” in the right upper quadrant sonography outcomes assessment program trial. Ann Emerg Med. 2006;48(3):227–235. Anesthesia: A Systematic Review. Regional Anesthesia and Pain Medicine. March/April 201, Vol.41, 7. Breitkreutz RF, Walcher F, Seeger FH (2007) Focused echocardiographic evaluation in resuscitation issue 2; 229-241. u pandemic, lung ultrasound was found highly effective for of the abdomen (signifying an enlarged phylorus) and the laboratory management: concept of an advanced life support-conformed algorithm. Crit Care Med 35:150–161. 30. Wathen JE, Gao D, Merritt G, et al. A randomized controlled trial comparing a fascia iliaca 8. Breitkreutz R, Price S, Steiger HV, Seeger FH et al. (2010) Focused echocardiographic evaluation in compartment nerve block to a traditional systemic analgesic for femur fractures in a pediatric emergency Written by Jennifer R. Marin, MD, MSc | August 30, 2018 distinguishing between viral and bacterial pneumonia,[33] and nding of hypochloremic hypokalemic metabolic alkalosis are absent life support and peri-resuscitation of emergency patients: a prospective trial. Resuscitation department. Ann Emerg Med 2007;50:162-171, 171.e1. 81:1527–1533. 31. Frenkel O, Liebmann O, Fischer JW. Ultrasound-guided forearm nerve blocks in kids: A novel suggests POCUS may be used to reduce unnecessary antibiotic during the initial presentation.,[44] ,[45]First used to diagnosis HPS in 9. Spurney CF, Sable CA, Berger JT, Martin GR (2005) Use of a hand carried ultrasound device by method for pain control in the treatment of hand-injured pediatric patients in the emergency department.
    [Show full text]
  • Emergency Ultrasound
    >> EEMERGENCYMERGENCY Phillips Perera, MD, RDMS, FACEP Thomas Mailhot, MD, RDMS UULTRASOUNDLTRASOUND Diku Mandavia, MD, FACEP, FRCPC Rapid Ultrasound in SHock: The RUSH Protocol EVALUATION OF THE PUMP: THE PARASTERNAL CARDIAC VIEWS Last month, we presented an overview of a unified ultrasound protocol for evalua- tion of the critical patient (Rapid Ultrasound in SHock, or RUSH). The RUSH exam employs bedside ultrasound to rapidly evaluate both the anatomy and physiology of a patient in shock, allowing the emergency physician to better identify the type of shock state and to formulate optimal therapy. The three main components of the exam were introduced: bedside ultrasonography to evaluate the “pump” (ie, cardiac echocardiogra- phy assessing for left ventricular contractility, pericardial effusion, and right ventricular strain), the “tank” (assessing the core vascular volume and Figure 1. Evaluation of identifying “fullness” or “leakiness” in the tank), and the the Pump “pipes” (assessing for thoracic or abdominal aortic aneu- rysm or dissection and deep vein thrombosis). This month, we emphasize the first component of the RUSH exam: the evaluation of the heart using bedside echo- cardiography. Focused echocardiography is best performed with a small footprint phased-array probe at a frequency of about 3 MHz. The heart is traditionally examined from four views on the anterior chest wall: the parasternal long- and short-axis, subxiphoid, and apical planes (Figure 1). In this article, the parasternal long- and short-axis planes will be examined in more detail. It is important for the emergency physician to learn and practice visualizing the parasternal views of the heart, as they often allow for a detailed cardiac examination and pro- vide important information about the patient’s physiologi- A.
    [Show full text]
  • Emergency Medicine Ultrasound Policies and Reimbursement
    Emerg Med Clin N Am 22 (2004) 829–838 Emergency medicine ultrasound policies and reimbursement guidelines Evelyn Cardenas, MD, FACEPa,b aDepartment of Emergency Medicine, Los Robles Regional Medical Center, Thousand Oaks, CA 91360, USA bAssistant Clinical Professor, Department of Medicine (Emergency Medicine), UCSF/Fresno Medical Education Program, University Medical Center, Fresno, CA 93703, USA Few technologies are capable of generating as much impassioned debate and discussion as the subject of emergency ultrasound imaging. Bedside ultrasound imaging by emergency medicine has attracted more attention than virtually any other bedside procedure in recent memory. Regardless of one’s point of view, every emergency medicine physician should be knowledgeable of current emergency medicine expert policy and recommendations regarding the use of ultrasound imaging technology in the emergency department (ED). In the last 3 years, a number of publications have provided critical information on practice management and reimbursement issues relating to bedside ultrasound performed by emergency physicians. The following is a summary of the salient points of these publications. Because of their potential impact and relevance to emergency medicine, specific policies issued from the general house of medicine that relate to ultrasound technology also are included in this article. Model of the Clinical Practice of Emergency Medicine The model of the Clinical Practice of Emergency Medicine (EM model) [1] replaces the Core Content of Emergency Medicine as the document that defines the body of knowledge and the scope of practice of the specialty. This document is the result of a collaborative effort of the American Board of Emergency Medicine, the American College of Emer- gency Physicians (ACEP), the Society for Academic Emergency Medicine, E-mail address: [email protected] 0733-8627/04/$ - see front matter Ó 2004 Elsevier Inc.
    [Show full text]
  • ACEP Ultrasound Guidelines
    POLICY STATEMENT Approved June 2016 Ultrasound Guidelines: Emergency, Point-of-Care and Clinical Ultrasound Guidelines in Medicine Revised with current title by Sections the ACEP Board of Directors June 2016 1. Introduction 2. Scope of Practice Revised and approved by 3. Training and Proficiency the ACEP Board of 4. Credentialing Directors October 2008 5. Quality and US Management Originally approved with 6. Value and Reimbursement title “Emergency Ultrasound 7. Clinical US Leadership in Healthcare Systems Guidelines” by the ACEP 8. Future Issues Board of Directors 9. Conclusion June 2001 Tables 1. Relevant Ultrasound Definitions Figures 1. ACEP 2016 Emergency US Scope of Practice 2. Pathways for emergency US training, credentialing, and incorporation of new applications 3. Clinical US Workflow Appendices 1. Evidence for Core Emergency US applications 2. Emergency US Learning Objectives 3. Recommendations for EM Residency EUS Education Program 4. Recommendations for EUS Course 5. US in UME - Medical School Rotation and Curriculum The complete document can be viewed at https://www.acep.org/ POLICY Ultrasound Guidelines: Emergency, Point-of-Care and Clinical US Guidelines in Medicine ACEP STATEMENT 2 of 47 Section 1 - Introduction Ultrasound (US) has become an integral modality in emergency care in the United States during the last two decades. Since the last update of these guidelines in 2008, US use has expanded throughout clinical medicine and established itself as a standard in the clinical evaluation of the emergency patient. There is a wide breadth of recognized emergency US applications offering advanced diagnostic and therapeutic capability benefit to patients across the globe. With its low capital, space, energy, and cost of training requirements, US can be brought to the bedside anywhere a clinician can go, directly or remotely.
    [Show full text]
  • Accuracy of Point-Of-Care Multiorgan Ultrasonography for the Diagnosis of Pulmonary Embolism
    CHEST Original Research PULMONARY PROCEDURES Accuracy of Point-of-Care Multiorgan Ultrasonography for the Diagnosis of Pulmonary Embolism Peiman Nazerian , MD ; Simone Vanni , MD , PhD ; Giovanni Volpicelli , MD , FCCP ; Chiara Gigli , MD ; Maurizio Zanobetti , MD ; Maurizio Bartolucci , MD ; Antonio Ciavattone , MD ; Alessandro Lamorte , MD ; Andrea Veltri , MD ; Andrea Fabbri , MD ; and Stefano Grifoni , MD Background: Presenting signs and symptoms of pulmonary embolism (PE) are nonspecifi c, favor- ing a large use of second-line diagnostic tests such as multidetector CT pulmonary angiography (MCTPA), thus exposing patients to high-dose radiation and to potential serious complications. We investigated the diagnostic performance of multiorgan ultrasonography (lung, heart, and leg vein ultrasonography) and whether multiorgan ultrasonography combined to Wells score and D-dimer could safely reduce MCTPA tests. Methods: Consecutive adult patients suspected of PE and with a Wells score . 4 or a positive D-dimer result were prospectively enrolled in three EDs. Final diagnosis was obtained with MCTPA. Mul- tiorgan ultrasonography was performed before MCTPA and considered diagnostic for PE if one or more subpleural infarcts, right ventricular dilatation, or DVT was detected. If multiorgan ultra- sonography was negative for PE, an alternative ultrasonography diagnosis was sought. Accuracies of each single-organ and multiorgan ultrasonography were calculated. Results: PE was diagnosed in 110 of 357 enrolled patients (30.8%). Multiorgan ultrasonography yielded a sensitivity of 90% and a specifi city of 86.2%, lung ultrasonography 60.9% and 95.9%, heart ultrasonography 32.7% and 90.9%, and vein ultrasonography 52.7% and 97.6%, respectively. Among the 132 patients (37%) with multiorgan ultrasonography negative for PE plus an alternative ultrasonographic diagnosis or plus a negative D-dimer result, no patients received PE as a fi nal diagnosis.
    [Show full text]
  • Bedside Echocardiography by Emergency Physicians
    ORIGINAL CONTRIBUTION Bedside Echocardiography by Emergency Physicians From the Department of Emergency Diku P. Mandavia, MD, FRCPC Study objective: Timely diagnosis of a pericardial effusion is Medicine, Los Angeles County+ Richard J. Hoffner, MD often critical in the emergency medicine setting, and echocar- University of Southern California Kevin Mahaney, MD Medical Center, Keck School of diography provides the only reliable method of diagnosis at the Sean O. Henderson, MD Medicine at the University of bedside. We attempt to determine the accuracy of bedside Southern California, Los Angeles, CA. echocardiography as performed by emergency physicians to Author contributions are provided detect pericardial effusions in a variety of high-risk populations. at the end of this article. Received for publication Methods: Emergency patients presenting with high-risk crite- September 26, 2000. Revision ria for the diagnosis of pericardial effusion underwent emer- received March 29, 2001. Accepted gency bedside 2-dimensional echocardiography by emergency for publication June 27, 2001. physicians who were trained in ultrasonography. The presence Presented in part at the Society for Academic Emergency Medicine or absence of a pericardial effusion was determined, and all annual meeting, Chicago, IL, images were captured on video or as thermal images. All emer- May 1998; the California Chapter- gency echocardiograms were subsequently reviewed by the American College of Emergency Physicians Scientific Assembly, Department of Cardiology for the presence of a pericardial effu- Monterey, CA, June 1998; and the sion. Seventh International Conference on Emergency Medicine, Vancouver, Results: During the study period, a total of 515 patients at British Columbia, Canada, high risk were enrolled.
    [Show full text]
  • Ultrasound in Emergency Medicine
    The Journal of Emergency Medicine, Vol. 37, No. 2, pp. 153–159, 2009 Copyright © 2009 Elsevier Inc. Printed in the USA. All rights reserved 0736-4679/09 $–see front matter doi:10.1016/j.jemermed.2007.10.078 Ultrasound in Emergency Medicine EMERGENCY DEPARTMENT ULTRASOUND CREDENTIALING: A SAMPLE POLICY AND PROCEDURE 1 John C. Stein, MD and Flavia Nobay, MD Division of Emergency Medicine, University of California San Francisco, San Francisco, California Reprint Address: John Stein, MD, Division of Emergency Medicine, University of California–Box 0208, 505 Parnassus Ave., San Francisco, CA 94143 e Abstract—Emergency physician use of bedside ultra- INTRODUCTION sound has increased dramatically over the last two decades. However, many emergency departments find it difficult to Ever since the early 1980s, the use of bedside ultrasound gain formal hospital credentialing for bedside sonography. by emergency physicians has become increasingly pop- We present the Emergency Department (ED) Ultrasound ular (1). The major Emergency Medicine societies sup- Credentialing Policy from the University of California, San port focused sonography in the Emergency Department Francisco. Although the American College of Emergency (ED), and the American Medical Association has simi- Physicians has published formal guidelines on this subject, larly advocated for its use (1–3). The medical literature they are not written in such a way that they are readily transcribed into a document suitable for review by credential- abounds with reports that have documented the benefits ing committees and executive medical boards. Our policy of bedside sonography performed by emergency physi- details the background of emergency bedside ultrasound, the cians. Sample curricula have been developed, and guide- goals of its use, the scope of emergency physician sonography, lines for credentialing and use have been developed credentialing criteria, and an example of a quality assurance (1,4).
    [Show full text]
  • Emergency Ultrasound Standard Reporting Guidelines
    Emergency Ultrasound Standard Reporting Guidelines Contributors to the 2018 Emergency Ultrasound Standard Reporting Guidelines: Rachel B. Liu, MD, FACEP, Chair, ACEP Emergency Ultrasound Section Mike Blaivas, MD, FACEP, ACEP member at-large Chris Moore, MD, FACEP, ACEP member at-large, author of the 2011 edition Adam B. Sivitz, MD, ACEP member at-large Matt Flannigan, DO, FACEP, ACEP Emergency Ultrasound Section Industry Subcommittee Co-Chair Alfredo Tirado, MD, FACEP, ACEP member at-large, author of the 2011 edition Vivek S. Tayal, MD, FACEP, ACEP Emergency Ultrasound Section Past Chair June 2018 (This version replaces the October 2011 version) ACEP Emergency Ultrasound Standard Reporting Guidelines 2 Emergency Ultrasound Standard Reporting Guidelines: Introduction and Statement of Purpose Developed by members of the ACEP Emergency Ultrasound Section These guidelines represent the product of a working group that was formed based on discussions at the Industry Roundtable subcommittee of the American College of Emergency Physicians (ACEP) Emergency Ultrasound Section. The impetus for these guidelines emerged from discussions with emergency ultrasound leaders and industry, both ultrasound manufacturers and electronic medical record (EMR) companies that indicated a need for a more structured method to report and communicate the findings of point-of-care emergency ultrasound (POCUS). This document serves as a resource to clinicians with a wide range of experience, and as such may contain fields or terms that may not be appropriate in all situations or by all clinicians. It is important to note that these guidelines in no way represent required elements of reporting. In fact, in general these guidelines err on the side of including more fields than may be used by most emergency physicians, and it is expected that many fields may remain unused depending on the situations.
    [Show full text]
  • Intro to Bedside Ultrasound
    7/24/2017 Leo Lamsen, MD, FAAFP, RDMS Introduction to EM Fellowship Director, UT Medical Center Bedside Ultrasound Medical Simulation Fellow, UT Medical Center Learning Objectives • Define point-of-care ultrasound and describe its uses. • Learn basic knobology and scanning techniques to optimize image acquisition. • Apply principles to perform the extended Focused Assessment with Sonography for Trauma (eFAST) Exam. • Review obtained images for quality assurance. Point-of-Care Ultrasound • Clinician performed and interpreted • Limited exam • Extension of physical exam • Helps determine diagnosis and guide clinical practice • Prioritize patient care • Patients like it 1 7/24/2017 Ma and Mateers’s Emergency Ultrasound Ma and Mateers’s Emergency Ultrasound Ma and Mateers’s Emergency Ultrasound Gain Basic Knobology • Gain • Time gain compensation • Depth • Zoom • Freeze Lamsen • Measuremants and Calculations 2 7/24/2017 Time Gain Compensation Depth Ma and Mateers’s Emergency Ultrasound Ma and Mateers’s Emergency Ultrasound Zoom Measurements and Calculations Lamsen Lamsen Lamsen Lamsen Ultrasound Modes • B-mode • M-mode • Color • Doppler B-mode 3 7/24/2017 M-mode Color Lamsen Lamsen Ma and Mateers’s Emergency Ultrasound Doppler Duplex Ma and Mateers’s Emergency Ultrasound Ma and Mateers’s Emergency Ultrasound Artifacts Shadowing • Shadowing • Acoustic enhancement • Mirror artifact • Gas • Ring-down artifact Lamsen 4 7/24/2017 Posterior acoustic enhancement Posterior acoustic enhancement Lamsen Lamsen Mirror artifact Ring-down artifact Ma and
    [Show full text]
  • An Evidence-Based Approach to the Evaluation and Treatment of Low
    July 2013 An Evidence-Based Approach Volume 15, Number 7 To The Evaluation And Author Pierre Borczuk, MD Assistant Professor of Medicine, Harvard Medical School; Associate in Treatment Of Low Back Pain In Emergency Medicine, Massachusetts General Hospital, Boston, MA Peer Reviewers The Emergency Department Boyd D. Burns, DO, FACEP Associate Professor of Emergency Medicine, Vice Chair of Academic Affairs and Residency Director, University of Oklahoma School of Abstract Community Medicine, Tulsa, OK Gregory L. Henry, MD, FACEP Clinical Professor, Department of Emergency Medicine, University of Low back pain is the most common musculoskeletal complaint Michigan Medical School; CEO, Medical Practice Risk Assessment, that results in a visit to the emergency department, and it is 1 Inc., Ann Arbor, MI of the top 5 most common complaints in emergency medicine. CME Objectives Estimates of annual healthcare expenditures for low back pain in Upon completion of this article, you should be able to: the United States exceed $90 billion annually, not even taking lost 1. Develop an approach to the evaluation of patients with low back pain to differentiate patients who are likely to have benign productivity and business costs into account. This review explores causes of pain from those who will need a medical workup and/ an evidence-based rationale for the evaluation of the patient with or imaging studies. low back pain, and it provides guidance on risk stratification 2. Recognize the red flag signs and symptoms in patients with low pertaining to laboratory assessment and radiologic imaging in the back pain. 3. Assess the neuroanatomy of the lower spine and nerve roots and emergency department.
    [Show full text]