Characterization and Properties of .R; S /-Commutative Matrices
Characterization and properties of .R;S/-commutative matrices William F. Trench Trinity University, San Antonio, Texas 78212-7200, USA Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA NOTICE: this is the author’s version of a work that was accepted for publication in Linear Algebra and Its Applications. Changes resulting from the publishing process, such as peer review, editing,corrections, structural formatting,and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Please cite this article in press as: W.F. Trench, Characterization and properties of .R;S /-commutative matrices, Linear Algebra Appl. (2012), doi:10.1016/j.laa.2012.02.003 Abstract 1 Cmm Let R D P diag. 0Im0 ; 1Im1 ;:::; k1Imk1 /P 2 and S D 1 Cnn Q diag. .0/In0 ; .1/In1 ;:::; .k1/Ink1 /Q 2 , where m0 C m1 C C mk1 D m, n0 C n1 CC nk1 D n, 0, 1, ..., k1 are distinct mn complex numbers, and W Zk ! Zk D f0;1;:::;k 1g. We say that A 2 C is .R;S /-commutative if RA D AS . We characterize the class of .R;S /- commutative matrrices and extend results obtained previously for the case where 2i`=k ` D e and .`/ D ˛` C .mod k/, 0 Ä ` Ä k 1, with ˛, 2 Zk. Our results are independent of 0, 1,..., k1, so long as they are distinct; i.e., if RA D AS for some choice of 0, 1,..., k1 (all distinct), then RA D AS for arbitrary of 0, 1,..., k1.
[Show full text]