Cardiovascular Autonomic Dysfunction in Patients with Drug-Induced Parkinsonism

Total Page:16

File Type:pdf, Size:1020Kb

Cardiovascular Autonomic Dysfunction in Patients with Drug-Induced Parkinsonism JCN Open Access ORIGINAL ARTICLE pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2016 Cardiovascular Autonomic Dysfunction in Patients with Drug-Induced Parkinsonism Joong-Seok Kima Background and PurposezzRecent studies have shown that several nonmotor symptoms Dong-Woo Ryua a differ between Parkinson’s disease (PD) and drug-induced parkinsonism (DIP). However, Ju-Hee Oh there have been no reports on cardiovascular autonomic function in DIP, and so this study a Yang-Hyun Lee investigated whether cardiovascular autonomic function differs between PD and DIP pa- Sung-Jin Parka tients. a Kipyung Jeon MethodszzThis study consecutively enrolled 20 DIP patients, 99 drug-naïve PD patients, Jong-Yun Leea and 25 age-matched healthy controls who underwent head-up tilt-table testing and 24-h am- Seong Hee Hoa bulatory blood pressure monitoring. Jungmin Soa ResultszzOrthostatic hypotension was more frequent in patients with PD or DIP than in b healthy controls. In DIP, orthostatic hypotension was associated with the underlying psychi- Jin Hee Im a atric diseases and neuroleptics use, whereas prokinetics were not related to orthostatic hypo- Kwang-Soo Lee tension. The supine blood pressure, nighttime blood pressure, and nocturnal blood pressure aDepartment of Neurology, dipping did not differ significantly between the DIP and control groups. Supine hypertension College of Medicine, The Catholic and nocturnal hypertension were more frequent in PD patients than in controls. University of Korea, Seoul, Korea bDepartment of Neurology, Inje University ConclusionszzThe included DIP patients frequently exhibited orthostatic hypotension that Sanggye Paik Hospital, Seoul, Korea was associated with the underlying diseases as well as the nature of and exposure time to the of- fending drugs. Clinicians should individualize the manifestations of DIP according to underlying diseases as well as the action mechanism of and exposure time to each offending drug. Key Wordszz Parkinson’s disease, drug-induced parkinsonism, cardiovascular autonomic dysfunction. INTRODUCTION Drug-induced parkinsonism (DIP) is the second most common cause of parkinsonism in the elderly after Parkinson’s disease (PD).1 DIP is traditionally associated with old-genera- tion (typical) antipsychotic agents, though it can also occur during the administration of several other classes of drugs including the newer (atypical) antipsychotic agents, gastroin- testinal prokinetics, and calcium-channel-blocking agents.2-4 The clinical presentations of DIP and PD are very similar, and therefore patients with Received March 28, 2016 1 Revised May 7, 2016 DIP are frequently misdiagnosed as having PD. Although most DIP patients experience a Accepted May 10, 2016 full and long-lasting recovery from DIP with no subsequent PD after discontinuing the of- Correspondence fending drugs, some patients develop persistent and worsening parkinsonian symptoms af- Joong-Seok Kim, MD, PhD ter drug discontinuation (i.e., subclinical parkinsonism or DIP unmasks PD) or experience Department of Neurology, the reappearance of PD after full remission from DIP (i.e., DIP antedates PD).5 Seoul St. Mary’s Hospital, College of Medicine, Cardiovascular autonomic dysfunction is relatively common in patients with PD, and can The Catholic University of Korea, occur independently of levodopa treatment and early in the course of the disease.6 The 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea manifestations of this dysfunction include orthostatic hypotension (OH), supine hyperten- Tel +82-2-2258-6078 cc This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Com- Fax +82-2-599-9686 mercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial E-mail [email protected] use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2016 Korean Neurological Association 1 JCN Autonomic Dysfunction in DIP sion (SH), nocturnal hypertension (NH), and absence of a de- tients were evaluated using the Unified Parkinson’s Disease crease in blood pressure (BP) during the night (nondipping).6,7 Rating Scale (UPDRS) Parts 1–3 and classified according to Recent analyses utilizing a nonmotor symptom question- the modified Hoehn and Yahr (H&Y) stage. Patients with the naire found that several nonmotor symptoms such as urinary following characteristics were excluded from the study: 1) and sleep symptoms and disturbances of taste or smell auto- history of diabetic neuropathy or other peripheral/autonom- nomic dysfunction occurred more frequent in patients with ic neuropathy, 2) history of previous relevant cardiac disease, PD than in those with DIP.8,9 However, cardiovascular auto- or any abnormalities on routine chest radiography or elec- nomic function has not previously been assessed in patients trocardiography, and 3) taking medications known to influ- with DIP. ence cardiovascular autonomic function. In this study we evaluated the cardiovascular autonomic Suspected offending drugs were continued in DIP patients function during head-up tilt-table testing and performed during all of the tests. Antihypertensive medications were 24-h ambulatory BP monitoring in PD and DIP patients as discontinued 7 days before the BP tests in all subjects, and no well as control subjects. serious clinical problems were observed during this period. METHODS Tilt-table testing The patients were examined in a temperature-controlled clini- Patients cal investigation room after having fasted overnight (except for This study was approved by the Institutional Review Board water). Electrocardiographic and noninvasive continuous-BP- of Seoul St. Mary’s Hospital, and each subject provided writ- monitoring leads were connected (YM6000, Mediana Tech, ten informed consent to participate. Twenty patients with Redmond, WA, USA). After 30 minutes of supine resting, DIP were enrolled consecutively, in addition to 99 with PD head-up tilt-table testing (20 minutes at 60°) was performed who met the clinical diagnostic criteria of the UK Brain Bank using a Manumed Special Tilt1-section tilt-table (ENRAF between March 2014 and February 2015.10 A clinical diagno- NONIUS, Rotterdam, the Netherlands). The BP was mea- sis of DIP was made based on the following diagnostic crite- sured manually every 5 minutes before tilting, at 1, 3, 5, 10, 15, ria:4 1) presence of at least two of the four cardinal signs and 20 minutes during head-up tilting, at 1 minute after tilt- (tremor, rigidity, bradykinesia, and impaired postural reflex- ing, and as deemed necessary to ensure subject safety. The es), 2) absence of a personal history of extrapyramidal disor- mean supine baseline and lowest tilt values for BP were re- ders before receiving treatment with an offending drug, 3) on- corded. Statistical analysis was applied to the lower values set of symptoms during the course of treatment with an from 3 and 5 minutes. offending drug, 4) reversal of parkinsonian symptoms (though OH was defined as a decrease in the systolic blood pres- not necessarily completely) after discontinuing offending sure (SBP) of at least 20 mm Hg or in the diastolic blood pres- drugs during a follow-up lasting more than 6 months, and 5) sure (DBP) of at least 10 mm Hg between 2 and 5 minutes normal dopamine transporter positron-emission tomography after the initiation of a head-up tilt.22,23 Patients with SBP ≥140 scan using 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3be- mm Hg or DBP ≥90 mm Hg were considered to have SH.24-26 ta-(4-iodophenyl) nortropane (FP-CIT). All of the PD pa- tients exhibited a decreased uptake of FP-CIT in the basal Ambulatory blood pressure monitoring ganglia. An automated 24-h BP recording instrument (Mobil-O- The DIP patients were subgrouped according to their un- Graph NG, I.E.M., Stolberg, Germany) was used to measure derlying diseases (psychiatric diseases vs. functional dyspep- the ambulatory BP every 15 minutes during the day and ev- sia or gastrointestinal prophylaxis) since patients with a psy- ery 30 minutes during the night. The mean values of SBP, chiatric disease may experience some degree of autonomic DBP, and heart rate during the daytime, nighttime, and over dysfunction and most neuroleptics have the side effect of OH 24-h periods were evaluated. Nocturnal decreases in BP and and act on dopaminergic, noradrenergic, cholinergic, and heart rate were calculated as percentage changes between the serotonergic pathways,11-18 whereas most prokinetics mainly daytime and nighttime mean values. Subjects with a <10% inhibit the dopamine D2 receptor in the central nervous sys- nocturnal decrease in mean BP were considered nondip- tem.19-21 Twenty-five age-matched healthy subjects free from pers.27 NH was defined according to the 2013 European Hy- neurological disease were enrolled as controls. pertension Society/European Cardiology Society guidelines Clinical information was collected, including age, sex, (i.e., mean nighttime SBP/DBP ≥120/70 mm Hg).28 symptom duration, history of arterial hypertension, diabetes mellitus, cigarette smoking, and current medications. All pa- 2 J Clin Neurol 2016 Kim JS et al. JCN Data analysis therapeutic range of pharmaceutical introduction in all DIP Statistical analyses were performed using SPSS (version 15.0 patients. for Windows, SPSS Incorporated, Chicago, IL, USA). One- PD and DIP patients frequently had OH (controls vs. PD way analysis of variance was used to compare means between vs. DIP, 4.0% vs. 27.1% vs. 25.0%; χ2=6.236, p=0.016). The groups, and Pearson’s χ2 test was used to compare the fre- orthostatic change in SBP (ΔSBP) was also greater in the PD quencies of categorical variables. The Mann-Whitney non- and DIP groups than in the control group. SH and NH were parametric U test was also used to analyze DIP subgroups. more frequent in PD patients than in controls. Supine BP Given the potential influence of age, sex, hypertension, and was higher in patients with PD than in controls and patients diabetes on the results of group comparisons, such compari- with DIP (Table 2).
Recommended publications
  • Table S1: Sensitivity, Specificity, PPV, NPV, and F1 Score of NLP Vs. ICD for Identification of Symptoms for (A) Biome Developm
    Table S1: Sensitivity, specificity, PPV, NPV, and F1 score of NLP vs. ICD for identification of symptoms for (A) BioMe development cohort; (B) BioMe validation cohort; (C) MIMIC-III; (D) 1 year of notes from patients in BioMe calculated using manual chart review. A) Fatigue Nausea and/or vomiting Anxiety Depression NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.99 (0.93- 0.59 (0.43- <0.00 0.25 (0.12- <0.00 <0.00 0.54 (0.33- Sensitivity 0.99 (0.9 – 1) 0.98 (0.88 -1) 0.3 (0.15-0.5) 0.85 (0.65-96) 0.02 1) 0.73) 1 0.42) 1 1 0.73) 0.57 (0.29- 0.9 (0.68- Specificity 0.89 (0.4-1) 0.75 (0.19-1) 0.68 0.97 (0.77-1) 0.03 0.98 (0.83-1) 0.22 0.81 (0.53-0.9) 0.96 (0.79-1) 0.06 0.82) 0.99) 0.99 (0.92- 0.86 (0.71- 0.94 (0.79- 0.79 (0.59- PPV 0.96 (0.82-1) 0.3 0.95 (0.66-1) 0.02 0.95 (0.66-1) 0.16 0.93 (0.68-1) 0.12 1) 0.95) 0.99) 0.92) 0.13 (0.03- <0.00 0.49 (0.33- <0.00 0.66 (0.48- NPV 0.89 (0.4-1) 0.007 0.94 (0.63-1) 0.34 (0.2-0.51) 0.97 (0.81-1) 0.86 (0.6-0.95) 0.04 0.35) 1 0.65) 1 0.81) <0.00 <0.00 <0.00 F1 Score 0.99 0.83 0.88 0.57 0.95 0.63 0.82 0.79 0.002 1 1 1 Itching Cramp Pain NLP (95% ICD (95% CI) P NLP (95% CI) ICD (95% CI) P NLP (95% CI) ICD (95% CI) P CI) 0.98 (0.86- 0.24 (0.09- <0.00 0.09 (0.01- <0.00 0.52 (0.37- <0.00 Sensitivity 0.98 (0.85-1) 0.99 (0.93-1) 1) 0.45) 1 0.29) 1 0.66) 1 0.89 (0.72- 0.5 (0.37- Specificity 0.96 (0.8-1) 0.98 (0.86-1) 0.68 0.98 (0.88-1) 0.18 0.5 (0-1) 1 0.98) 0.66) 0.88 (0.69- PPV 0.96 (0.8-1) 0.8 (0.54-1) 0.32 0.8 (0.16-1) 0.22 0.99 (0.93-1) 0.98 (0.87-1) NA* 0.97) 0.98 (0.85- 0.57 (0.41- <0.00 0.58 (0.43- <0.00 NPV 0.98 (0.86-1) 0.5 (0-1) 0.02 (0-0.08) NA* 1) 0.72) 1 0.72) 1 <0.00 <0.00 <0.00 F1 Score 0.97 0.56 0.91 0.28 0.99 0.68 1 1 1 *Denotes 95% confidence intervals and P values that could not be calculated due to insufficient cells in 2x2 tables.
    [Show full text]
  • Product List March 2019 - Page 1 of 53
    Wessex has been sourcing and supplying active substances to medicine manufacturers since its incorporation in 1994. We supply from known, trusted partners working to full cGMP and with full regulatory support. Please contact us for details of the following products. Product CAS No. ( R)-2-Methyl-CBS-oxazaborolidine 112022-83-0 (-) (1R) Menthyl Chloroformate 14602-86-9 (+)-Sotalol Hydrochloride 959-24-0 (2R)-2-[(4-Ethyl-2, 3-dioxopiperazinyl) carbonylamino]-2-phenylacetic 63422-71-9 acid (2R)-2-[(4-Ethyl-2-3-dioxopiperazinyl) carbonylamino]-2-(4- 62893-24-7 hydroxyphenyl) acetic acid (r)-(+)-α-Lipoic Acid 1200-22-2 (S)-1-(2-Chloroacetyl) pyrrolidine-2-carbonitrile 207557-35-5 1,1'-Carbonyl diimidazole 530-62-1 1,3-Cyclohexanedione 504-02-9 1-[2-amino-1-(4-methoxyphenyl) ethyl] cyclohexanol acetate 839705-03-2 1-[2-Amino-1-(4-methoxyphenyl) ethyl] cyclohexanol Hydrochloride 130198-05-9 1-[Cyano-(4-methoxyphenyl) methyl] cyclohexanol 93413-76-4 1-Chloroethyl-4-nitrophenyl carbonate 101623-69-2 2-(2-Aminothiazol-4-yl) acetic acid Hydrochloride 66659-20-9 2-(4-Nitrophenyl)ethanamine Hydrochloride 29968-78-3 2,4 Dichlorobenzyl Alcohol (2,4 DCBA) 1777-82-8 2,6-Dichlorophenol 87-65-0 2.6 Diamino Pyridine 136-40-3 2-Aminoheptane Sulfate 6411-75-2 2-Ethylhexanoyl Chloride 760-67-8 2-Ethylhexyl Chloroformate 24468-13-1 2-Isopropyl-4-(N-methylaminomethyl) thiazole Hydrochloride 908591-25-3 4,4,4-Trifluoro-1-(4-methylphenyl)-1,3-butane dione 720-94-5 4,5,6,7-Tetrahydrothieno[3,2,c] pyridine Hydrochloride 28783-41-7 4-Chloro-N-methyl-piperidine 5570-77-4
    [Show full text]
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • 01012100 Pure-Bred Horses 0 0 0 0 0 01012900 Lives Horses, Except
    AR BR UY Mercosu PY applied NCM Description applied applied applied r Final Comments tariff tariff tariff tariff Offer 01012100 Pure-bred horses 0 0 0 0 0 01012900 Lives horses, except pure-bred breeding 2 2 2 2 0 01013000 Asses, pure-bred breeding 4 4 4 4 4 01019000 Asses, except pure-bred breeding 4 4 4 4 4 01022110 Purebred breeding cattle, pregnant or lactating 0 0 0 0 0 01022190 Other pure-bred cattle, for breeding 0 0 0 0 0 Other bovine animals for breeding,pregnant or 01022911 lactating 2 2 2 2 0 01022919 Other bovine animals for breeding 2 2 2 2 4 01022990 Other live catlle 2 2 2 2 0 01023110 Pure-bred breeding buffalo, pregnant or lactating 0 0 0 0 0 01023190 Other pure-bred breeding buffalo 0 0 0 0 0 Other buffalo for breeding, ex. pure-bred or 01023911 pregnant 2 2 2 2 0 Other buffalo for breeding, except pure-bred 01023919 breeding 2 2 2 2 4 01023990 Other buffalos 2 2 2 2 0 01029000 Other live animals of bovine species 0 0 0 0 0 01031000 Pure-bred breedig swines 0 0 0 0 0 01039100 Other live swine, weighing less than 50 kg 2 2 2 2 0 01039200 Other live swine, weighing 50 kg or more 2 2 2 2 0 01041011 Pure-bred breeding, pregnant or lactating, sheep 0 0 0 0 0 01041019 Other pure-bred breeding sheep 0 0 0 0 0 01041090 Others live sheep 2 2 2 2 0 01042010 Pure-bred breeding goats 0 0 0 0 0 01042090 Other live goats 2 2 2 2 0 Fowls spec.gallus domestic.w<=185g pure-bred 01051110 breeding 0 0 0 0 0 Oth.live fowls spec.gall.domest.weig.not more than 01051190 185g 2 2 2 2 0 01051200 Live turkeys, weighing not more than 185g 2 2
    [Show full text]
  • A Four-Country Comparison of Healthcare Systems, Implementation
    Neurogastroenterology & Motility Neurogastroenterol Motil (2014) 26, 1368–1385 doi: 10.1111/nmo.12402 REVIEW ARTICLE A four-country comparison of healthcare systems, implementation of diagnostic criteria, and treatment availability for functional gastrointestinal disorders A report of the Rome Foundation Working Team on cross-cultural, multinational research M. SCHMULSON,* E. CORAZZIARI,† U. C. GHOSHAL,‡ S.-J. MYUNG,§ C. D. GERSON,¶ E. M. M. QUIGLEY,** K.-A. GWEE†† & A. D. SPERBER‡‡ *Laboratorio de Hıgado, Pancreas y Motilidad (HIPAM)-Department of Experimental Medicine, Faculty of Medicine-Universidad Nacional Autonoma de Mexico (UNAM). Hospital General de Mexico, Mexico City, Mexico †Gastroenterologia A, Department of Internal Medicine and Medical Specialties, University La Sapienza, Rome, Italy ‡Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Science, Lucknow, India §Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea ¶Division of Gastroenterology, Mount Sinai School of Medicine, New York, NY, USA **Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA ††Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ‡‡Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel Key Messages • This report identified seven key issues related to healthcare provision that may impact how patients with FGIDs are investigated, diagnosed and managed. • Variations in healthcare provision around the world in patients with FGIDs have not been reviewed. • We compared four countries that are geographically and culturally diverse, and exhibit differences in the healthcare coverage provided to their population: Italy, South Korea, India and Mexico. • Since there is a paucity of publications relating to the issues covered in this report, some of the findings are based on the authors’ personal perspectives, press reports and other published sources.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Jp Xvii the Japanese Pharmacopoeia
    JP XVII THE JAPANESE PHARMACOPOEIA SEVENTEENTH EDITION Official from April 1, 2016 English Version THE MINISTRY OF HEALTH, LABOUR AND WELFARE Notice: This English Version of the Japanese Pharmacopoeia is published for the convenience of users unfamiliar with the Japanese language. When and if any discrepancy arises between the Japanese original and its English translation, the former is authentic. The Ministry of Health, Labour and Welfare Ministerial Notification No. 64 Pursuant to Paragraph 1, Article 41 of the Law on Securing Quality, Efficacy and Safety of Products including Pharmaceuticals and Medical Devices (Law No. 145, 1960), the Japanese Pharmacopoeia (Ministerial Notification No. 65, 2011), which has been established as follows*, shall be applied on April 1, 2016. However, in the case of drugs which are listed in the Pharmacopoeia (hereinafter referred to as ``previ- ous Pharmacopoeia'') [limited to those listed in the Japanese Pharmacopoeia whose standards are changed in accordance with this notification (hereinafter referred to as ``new Pharmacopoeia'')] and have been approved as of April 1, 2016 as prescribed under Paragraph 1, Article 14 of the same law [including drugs the Minister of Health, Labour and Welfare specifies (the Ministry of Health and Welfare Ministerial Notification No. 104, 1994) as of March 31, 2016 as those exempted from marketing approval pursuant to Paragraph 1, Article 14 of the Same Law (hereinafter referred to as ``drugs exempted from approval'')], the Name and Standards established in the previous Pharmacopoeia (limited to part of the Name and Standards for the drugs concerned) may be accepted to conform to the Name and Standards established in the new Pharmacopoeia before and on September 30, 2017.
    [Show full text]
  • Section B Changed Classes/Guidelines Final
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2019 Section B Changed Classes/Guidelines Final Version Date of issue: 24th December 2018 1 A3 FUNCTIONAL GASTRO-INTESTINAL DISORDER DRUGS R2003 A3A PLAIN ANTISPASMODICS AND ANTICHOLINERGICS R1993 Includes all plain synthetic and natural antispasmodics and anticholinergics. A3B Out of use; can be reused. A3C ANTISPASMODIC/ATARACTIC COMBINATIONS This group includes combinations with tranquillisers, meprobamate and/or barbiturates except when they are indicated for disorders of the autonomic nervous system and neurasthenia, in which case they are classified in N5B4. A3D ANTISPASMODIC/ANALGESIC COMBINATIONS R1997 This group includes combinations with analgesics. Products also containing either tranquillisers or barbiturates and analgesics to be also classified in this group. Antispasmodics indicated exclusively for dysmenorrhoea are classified in G2X1. A3E ANTISPASMODICS COMBINED WITH OTHER PRODUCTS r2011 Includes all other combinations not specified in A3C, A3D and A3F. Combinations of antispasmodics and antacids are classified in A2A3; antispasmodics with antiulcerants are classified in A2B9. Combinations of antispasmodics with antiflatulents are classified here. A3F GASTROPROKINETICS r2013 This group includes products used for dyspepsia and gastro-oesophageal reflux. Compounds included are: alizapride, bromopride, cisapride, clebopride, cinitapride, domperidone, levosulpiride, metoclopramide, trimebutine. Prucalopride is classified in A6A9. Combinations of gastroprokinetics with other substances
    [Show full text]
  • Trends in the Prevalence of Drug-Induced Parkinsonism in Korea
    Original Article Yonsei Med J 2019 Aug;60(8):760-767 https://doi.org/10.3349/ymj.2019.60.8.760 pISSN: 0513-5796 · eISSN: 1976-2437 Trends in the Prevalence of Drug-Induced Parkinsonism in Korea Ji-Hye Byun1, Hyemin Cho2, Yun Joong Kim3, Joong-Seok Kim4, Jong Sam Baik5, Sunmee Jang2, and Hyeo-Il Ma3 1Pharmaceutical Policy Research Team, Health Insurance Review and Assessment Service, Wonju; 2College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon; 3Department of Neurology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang; 4Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul; 5Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea. Purpose: Discontinuation of offending drugs can prevent drug-induced parkinsonism (DIP) before it occurs and reverse or cure it afterwards. The aim of this study was to investigate the prevalence of DIP and the utilization of offending drugs through an analysis of representative nationwide claims data. Materials and Methods: We selected DIP patients of ages ranging from 40 to 100 years old with the G21.1 code from the Korean Na- tional Service Health Insurance Claims database from 2009 to 2015. The annual standardized prevalence of DIP was explored from 2009 to 2015. Trends were estimated using the compound annual growth rate (CAGR) and the Cochran-Armitage test for DIP over the course of 6 years. Additionally, the utilization of offending drugs was analyzed. Results: The annual prevalence of DIP was 4.09 per 100000 people in 2009 and 7.02 in 2015 (CAGR: 9.42%, p<0.001).
    [Show full text]
  • REVIEW Genotoxic and Carcinogenic Effects of Gastrointestinal Drugs
    Mutagenesis vol. 25 no. 4 pp. 315–326, 2010 doi:10.1093/mutage/geq025 Advance Access Publication 17 May 2010 REVIEW Genotoxic and carcinogenic effects of gastrointestinal drugs Giovanni Brambilla*, Francesca Mattioli and a further in vivo test using a tissue other than the bone marrow/ Antonietta Martelli peripheral blood should be done. Guidelines for carcinogenic- Department of Internal Medicine, Division of Clinical Pharmacology and ity testing of pharmaceuticals (4,5) indicate that a long-term Toxicology, University of Genoa, Viale Benedetto XV 2, I-16132 Genoa, Italy carcinogenicity study plus a short- or medium-term in vivo system should be performed for all pharmaceuticals whose expected clinical use is continuous for at least 6 months as *To whom correspondence should be addressed. Tel: +39 010 353 8800; well as for pharmaceuticals used frequently in an intermittent Fax: þ39 010 353 8232; Email: [email protected] manner in the treatment of chronic recurrent conditions. In the Received on January 28, 2010; revised on March 23, 2010; absence of clear evidence favouring one species, the rat should accepted on April 13, 2010 be selected. In long-term carcinogenicity assays, the highest This review provides a compendium of retrievable results dose should be at least .25-fold, on a milligram per square of genotoxicity and carcinogenicity assays performed on meter basis, than the maximum recommended human daily marketed gastrointestinal drugs. Of the 71 drugs consid- dose or represent a 25-fold ratio of rodent to human area under ered, 38 (53.5%) do not have retrievable data, whereas the curve. The maximum tolerated dose (MTD) or a limit dose the other 33 (46.5%) have at least one genotoxicity or of 2000 mg/kg can be used as alternatives.
    [Show full text]
  • Proposal for the Inclusion of Anti-Emetic Medicines for The
    PROPOSAL FOR THE INCLUSION OF ANTI-EMETIC MEDICATIONS (FOR CHILDREN) IN THE WHO MODEL LIST OF ESSENTIAL MEDICINES Marc Bevan, Kent Johnson, Elizabeth Seil and Jane Robertson Discipline of Clinical Pharmacology School of Medicine and Public Health Faculty of Health University of Newcastle Level 5, Clinical Sciences Building, NM2 Calvary Mater Hospital Edith Street, Waratah, 2298 New South Wales AUSTRALIA Tel +61-02-49211726 Fax + 61-02-49602088 WHO EML – Anti-emetics – January 2009 1. Summary statement of the proposal Anti-emetic medications (anti-histamines, dopamine antagonists, serotonin 5-HT3 antagonists, steroids and anti-cholinergics) are proposed for inclusion in the World Health Organization (WHO) Model List of Essential Medicines for the management of postoperative nausea and vomiting in children. 2. Name of focal point in WHO submitting or supporting the application 3. Name of the organisation preparing the application Discipline of Clinical Pharmacology, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Level 5, Clinical Sciences Building, NM2, Calvary Mater Hospital, Edith Street, Waratah, 2298, New South Wales, Australia. 4. Treatments reviewed in the proposal The proposal reviews relevant data regarding the use of five classes of anti-emetic medications for the management of postoperative nausea and vomiting in children: o Anti-histamines (e.g. cyclizine, dimenhydrinate, promethazine) o Dopamine antagonists (e.g. droperidol, metoclopramide, perphenazine) o Serotonin 5-HT3 antagonists (e.g. granisetron, ondansetron, tropisetron) o Steroids (e.g. dexamethasone) o Anti-cholinergics (e.g. hyoscine) It should be noted that two treatments (promethazine and metoclopramide) are currently listed on the WHO Model List of Essential Medicines as anti-emetic medications for children (WHO, 2007).
    [Show full text]
  • Drug Repositioning for Seven Psychiatric Disorders
    bioRxiv preprint doi: https://doi.org/10.1101/096503; this version posted December 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. When GWAS meets the Connectivity Map: drug repositioning for seven psychiatric disorders Hon-Cheong So1,2*, Carlos K.L. Chau1, Wan-To Chiu3, Kin-Sang Ho3, Cho-Pong Lo3, Stephanie Ho-Yue Yim4 and Pak C. Sham5,6,7,8 1School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 2KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology and The Chinese University of Hong Kong 3Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 4Univeristy of Exeter Medical School, United Kingdom 5Department of Psychiatry, University of Hong Kong, Pokfulam, Hong Kong 6Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong 7State Key Laboratory for Cognitive and Brain Sciences, University of Hong Kong, Pokfulam, Hong Kong 8Centre for Reproduction, Development and Growth, University of Hong Kong, Pokfulam, Hong Kong *Correspondence to: Hon-Cheong So, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Email: [email protected] (Submitted to bioRxiv on 23 Dec 2016) 1 bioRxiv preprint doi: https://doi.org/10.1101/096503; this version posted December 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Our knowledge of disease genetics has advanced rapidly during the past decade, with the advent of high-throughput genotyping technologies such as genome-wide association studies (GWAS).
    [Show full text]