Chapter 6 Electronic Structure of Atoms Ch6

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6 Electronic Structure of Atoms Ch6 101 F02 Chapter 6 Electronic structure of atoms Ch6 • light • photons • spectra • Heisenberg’s uncertainty principle • atomic orbitals • electron configurations • the periodic table 6.1 The wave nature of light Visible light is a form of electromagnetic radiation, or radiant energy. Radiation carries energy through space 1 101 F02 Electromagnetic radiation can be imagined as a self-propagating Ch6 transverse oscillating wave of electric and magnetic fields. The number of waves passing a given point per unit of time is the frequency For waves traveling at the same velocity, the longer the wavelength, the smaller the frequency. All electromagnetic radiation travels at the same velocity The wavelength and frequency of light is therefore related in a straightforward way: Blackboard examples 1. what is the wavelength of UV light with ν = 5.5 x 1015 s-1? 2. what is the frequency of electromagnetic radiation that has a wavelength of 0.53 m? Wave nature of light successfully explains a range of different phenomena. 2 101 F02 Ch6 Thomas Young’s sketch of two-slit diffraction of light (1803) 6.2 Quantized Energy and Photons Some phenomena cannot be explained using a wave model of light. 1. Blackbody radiation 2. The photoelectric effect 3. Emission spectra Hot Objects and the Quantization of Energy Heated solids emit radiation (blackbody radiation) In 1900, Max Planck investigated black body radiation, and he proposed that energy can only be absorbed or released from atoms in certain amounts, called “quanta” The relationship between energy, E, and frequency is: The Photoelectric Effect and Photons The photoelectric effect provides evidence for the particle nature of light and for quantization. 3 101 F02 Ch6 Einstein proposed that light could have particle-like properties, which he called photons. Light shining on the surface of a metal can cause electrons to be ejected from the metal. Below a threshold frequency no electrons are ejected Light has wave-like AND particle-like properties Blackboard examples 1. MRI body scanners operate with 400 MHz radiofrequency energy. How much energy does this correspond to in kilojoules/mol? 2. A mole of yellow photons of wavelength 527 nm has __________ kJ of energy. 6.3 Line Spectra and the Bohr Model Line spectra Radiation composed of only one wavelength is called monochromatic. When radiation from a light source, such as a light bulb, is separated into its different wavelength components, a spectrum is produced, 4 101 F02 Ch6 White light passed through a prism provides a continuous spectrum Bohr’s Model Rutherford assumed that electrons orbited the nucleus analogous to planets orbiting the sun; however, a charged particle moving in a circular path should lose energy Niels Bohr noted the line spectra of certain elements and assumed that electrons were confined to specific energy states. These he called orbits. Bohr’s model is based on three postulates: 1. Only orbits of specific radii are permitted for electrons in an atom 2. An electron in a permitted orbit has a specific energy 3. Energy is only emitted or absorbed by an electron as it moves from one allowed energy state to another 5 101 F02 Ch6 The Energy States of the Hydrogen Atom Colors from excited gases arise because electrons move between energy states in the atom. Since the energy states are quantized, the light emitted from excited atoms must be quantized and appear as line spectra. Bohr showed mathematically that where n is the principal quantum number (i.e., n = 1, 2, 3…) and RH is the Rydberg constant. The first orbit in the Bohr model has n = 1 and is closest to the nucleus. The furthest orbit in the Bohr model has n = ∞ and corresponds to E = 0. Electrons in the Bohr model can only move between orbits by absorbing and emitting energy in quanta (E = hν). The ground state = the lowest energy state The amount of energy absorbed or emitted by moving between states is given by Blackboard examples 1. When the electron in a hydrogen atom moves from n = 6 to n = 2, is light emitted or absorbed? 2. What is its wavelength (in nm)? 6 101 F02 Ch6 Limitations of the Bohr Model The Bohr Model has several limitations: However, the model introduces two important ideas: 1. the energy of an electron is quantized: electrons exist only in certain energy levels described by quantum numbers 6.4 The wave behavior of matter Louis de Broglie posited that if light can have material properties, matter should exhibit wave properties de Broglie proposed that the characteristic wavelength of the electron or of any other particle depends on its mass, m, and on its velocity, v Matter waves is the term used to describe wave characteristics of material particles. 7 101 F02 Ch6 Blackboard examples 1. What is the wavelength of a bullet (7.5 g) traveling at 700 ms-1? 2. At what speed must a 3.0 mg object be moving in order to have a de Broglie wavelength of 5.4 × 10-29 m? The Uncertainty Principle Heisenberg’s uncertainty principle: The dual nature of matter sets a fundamental limit on how precisely we can know the location and momentum of an object. Heisenberg dreamt up the gamma ray microscope to explain his uncertainty principle. A source of photons is used to illuminate an electron fired from the left of the picture. The position of the electron can be determined from the scattering of the photons into the telescope at the bottom right of the picture. Heisenberg related the uncertainty of the position, ∆x, and the uncertainty in momentum ∆(mv) to a quantity involving Planck’s constant: 8 101 F02 Ch6 6.5 Quantum Mechanics and Atomic Orbitals Erwin Schrödinger proposed an equation containing both wave and particle terms. The solution of the equation is known as a wave function, Ψ (psi), and describes the behavior of a quantum mechanical object, like an electron. Ψ2 is called the probability density. It gives the electron density for the atom. Orbitals and quantum numbers If we solve the Schrödinger equation we get wave functions and corresponding energies. The probability density (or electron density) described by an orbital has a characteristic energy and shape. The energy and shape of orbitals are described by three quantum numbers. These arise from the mathematics of solving the Schrödinger equation. the principal quantum number, n must be a positive integer n = 1,2,3,4,… the angular momentum quantum number, ℓ maximum value is (n-1), i.e. ℓ = 0,1,2,3…(n-1) use letters for ℓ (s, p, d and f for ℓ = 0, 1, 2, and 3). the magnetic quantum number, mℓ maximum value depends on ℓ, can take integral values from – ℓ to + ℓ Blackboard examples 1. Tabulate the relationship among values of n, ℓ and mℓ through n = 4. 9 101 F02 Ch6 Orbitals can be ranked in terms of energy; as n increases energy level spacing becomes smaller. 6.6 Representations of Orbitals The s orbitals • All s orbitals are spherical •As n increases, the s orbitals get larger •As n increases, the number of nodes increases The p orbitals • p orbitals are dumbell-shaped with two lobes and a node at the nucleus • 3 values of mℓ, 3 different orientations The d orbitals d orbitals have two nodes at the nucleus 10 101 F02 Ch6 • Three of the d orbitals lie in a plane bisecting the x-, y-, and z-axes • Two of the d orbitals lie in a plane aligned along the x-, y-, and z-axes • Four of the d orbitals have four lobes each • One d orbital has two lobes and a collar 6.7 Many-Electron Atoms Orbitals and Their Energies In a many-electron atom, for a given value of n, the energy of an orbital increases with increasing value of ℓ Therefore, the energy-level diagram looks slightly different for many-electron systems Electron Spin and the Pauli Exclusion Principle Line spectra of many-electron atoms show each line as a closely spaced pair of lines. 11 101 F02 Ch6 Stern and Gerlach designed an experiment to determine why. A beam of atoms was passed through a slit and into a magnetic field and the atoms were detected: Two spots were found: one with the electrons spinning in one direction and one with the electrons spinning in the opposite direction. Electron spin is quantized: How do we show spin? Pauli’s exclusion principle states that: 6.8 Electron Configurations Electron configurations tell us how the electrons are distributed among the various orbitals of an atom. When writing ground-state electronic configurations: 12 101 F02 Ch6 Hund’s Rule “For degenerate orbitals, the lowest energy is attained when the number of electrons with the same spin is maximized” Blackboard examples 1. Draw the electron configurations of Li, Be, B, C, N, O, Ne and Na. Condensed Electron Configurations Electron configurations may be written using a shorthand notation (condensed electron configuration): 1. Write the core electrons corresponding to the noble gas in square brackets 2. Write the valence electrons explicitly Blackboard examples 1. Draw the condensed electron configurations of Li, Na and P. Transition Metals After Ca the 3d orbitals begin to fill. The block of the periodic table in which the d orbitals are filling represents the transition metals. 13 101 F02 Ch6 6.9 Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Blocks of elements in periodic table related to which orbital is being filled Note that the 3d orbitals fill after the 4s orbital.
Recommended publications
  • Schrödinger Equation)
    Lecture 37 (Schrödinger Equation) Physics 2310-01 Spring 2020 Douglas Fields Reduced Mass • OK, so the Bohr model of the atom gives energy levels: • But, this has one problem – it was developed assuming the acceleration of the electron was given as an object revolving around a fixed point. • In fact, the proton is also free to move. • The acceleration of the electron must then take this into account. • Since we know from Newton’s third law that: • If we want to relate the real acceleration of the electron to the force on the electron, we have to take into account the motion of the proton too. Reduced Mass • So, the relative acceleration of the electron to the proton is just: • Then, the force relation becomes: • And the energy levels become: Reduced Mass • The reduced mass is close to the electron mass, but the 0.0054% difference is measurable in hydrogen and important in the energy levels of muonium (a hydrogen atom with a muon instead of an electron) since the muon mass is 200 times heavier than the electron. • Or, in general: Hydrogen-like atoms • For single electron atoms with more than one proton in the nucleus, we can use the Bohr energy levels with a minor change: e4 → Z2e4. • For instance, for He+ , Uncertainty Revisited • Let’s go back to the wave function for a travelling plane wave: • Notice that we derived an uncertainty relationship between k and x that ended being an uncertainty relation between p and x (since p=ћk): Uncertainty Revisited • Well it turns out that the same relation holds for ω and t, and therefore for E and t: • We see this playing an important role in the lifetime of excited states.
    [Show full text]
  • Modern Physics: Problem Set #5
    Physics 320 Fall (12) 2017 Modern Physics: Problem Set #5 The Bohr Model ("This is all nonsense", von Laue on Bohr's model; "It is one of the greatest discoveries", Einstein on the same). 2 4 mek e 1 ⎛ 1 ⎞ hc L = mvr = n! ; E n = – 2 2 ≈ –13.6eV⎜ 2 ⎟ ; λn →m = 2! n ⎝ n ⎠ | E m – E n | Notes: Exam 1 is next Friday (9/29). This exam will cover material in chapters 2 through 4. The exam€ is closed book, closed notes but you may bring in one-half of an 8.5x11" sheet of paper with handwritten notes€ and equations. € Due: Friday Sept. 29 by 6 pm Reading assignment: for Monday, 5.1-5.4 (Wave function for matter & 1D-Schrodinger equation) for Wednesday, 5.5, 5.8 (Particle in a box & Expectation values) Problem assignment: Chapter 4 Problems: 54. Bohr model for hydrogen spectrum (identify the region of the spectrum for each λ) 57. Electron speed in the Bohr model for hydrogen [Result: ke 2 /n!] A1. Rotational Spectra: The figure shows a diatomic molecule with bond- length d rotating about its center of mass. According to quantum theory, the d m ! ! ! € angular momentum ( ) of this system is restricted to a discrete set L = r × p m of values (including zero). Using the Bohr quantization condition (L=n!), determine the following: a) The allowed€ rotational energies of the molecule. [Result: n 2!2 /md 2 ] b) The wavelength of the photon needed to excite the molecule from the n to the n+1 rotational state.
    [Show full text]
  • Bohr Model of Hydrogen
    Chapter 3 Bohr model of hydrogen Figure 3.1: Democritus The atomic theory of matter has a long history, in some ways all the way back to the ancient Greeks (Democritus - ca. 400 BCE - suggested that all things are composed of indivisible \atoms"). From what we can observe, atoms have certain properties and behaviors, which can be summarized as follows: Atoms are small, with diameters on the order of 0:1 nm. Atoms are stable, they do not spontaneously break apart into smaller pieces or collapse. Atoms contain negatively charged electrons, but are electrically neutral. Atoms emit and absorb electromagnetic radiation. Any successful model of atoms must be capable of describing these observed properties. 1 (a) Isaac Newton (b) Joseph von Fraunhofer (c) Gustav Robert Kirch- hoff 3.1 Atomic spectra Even though the spectral nature of light is present in a rainbow, it was not until 1666 that Isaac Newton showed that white light from the sun is com- posed of a continuum of colors (frequencies). Newton introduced the term \spectrum" to describe this phenomenon. His method to measure the spec- trum of light consisted of a small aperture to define a point source of light, a lens to collimate this into a beam of light, a glass spectrum to disperse the colors and a screen on which to observe the resulting spectrum. This is indeed quite close to a modern spectrometer! Newton's analysis was the beginning of the science of spectroscopy (the study of the frequency distri- bution of light from different sources). The first observation of the discrete nature of emission and absorption from atomic systems was made by Joseph Fraunhofer in 1814.
    [Show full text]
  • Bohr's 1913 Molecular Model Revisited
    Bohr’s 1913 molecular model revisited Anatoly A. Svidzinsky*†‡, Marlan O. Scully*†§, and Dudley R. Herschbach¶ *Departments of Chemistry and Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544; †Departments of Physics and Chemical and Electrical Engineering, Texas A&M University, College Station, TX 77843-4242; §Max-Planck-Institut fu¨r Quantenoptik, D-85748 Garching, Germany; and ¶Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 Contributed by Marlan O. Scully, July 10, 2005 It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to few electron systems, such as the H2 molecule. Here, we find previously undescribed solutions within the Bohr theory that describe the potential energy curve for the lowest singlet and triplet states of H2 about as well as the early wave mechanical treatment of Heitler and London. We also develop an interpolation scheme that substantially improves the agreement with the exact ground-state potential curve of H2 and provides a good description of more complicated molecules such as LiH, Li2, BeH, and He2. Bohr model ͉ chemical bond ͉ molecules he Bohr model (1–3) for a one-electron atom played a major Thistorical role and still offers pedagogical appeal. However, when applied to the simple H2 molecule, the ‘‘old quantum theory’’ proved unsatisfactory (4, 5). Here we show that a simple extension of the original Bohr model describes the potential energy curves E(R) for the lowest singlet and triplet states about Fig. 1. Molecular configurations as sketched by Niels Bohr; [from an unpub- as well as the first wave mechanical treatment by Heitler and lished manuscript (7), intended as an appendix to his 1913 papers].
    [Show full text]
  • Bohr's Model and Physics of the Atom
    CHAPTER 43 BOHR'S MODEL AND PHYSICS OF THE ATOM 43.1 EARLY ATOMIC MODELS Lenard's Suggestion Lenard had noted that cathode rays could pass The idea that all matter is made of very small through materials of small thickness almost indivisible particles is very old. It has taken a long undeviated. If the atoms were solid spheres, most of time, intelligent reasoning and classic experiments to the electrons in the cathode rays would hit them and cover the journey from this idea to the present day would not be able to go ahead in the forward direction. atomic models. Lenard, therefore, suggested in 1903 that the atom We can start our discussion with the mention of must have a lot of empty space in it. He proposed that English scientist Robert Boyle (1627-1691) who the atom is made of electrons and similar tiny particles studied the expansion and compression of air. The fact carrying positive charge. But then, the question was, that air can be compressed or expanded, tells that air why on heating a metal, these tiny positively charged is made of tiny particles with lot of empty space particles were not ejected ? between the particles. When air is compressed, these 1 Rutherford's Model of the Atom particles get closer to each other, reducing the empty space. We mention Robert Boyle here, because, with Thomson's model and Lenard's model, both had him atomism entered a new phase, from mere certain advantages and disadvantages. Thomson's reasoning to experimental observations. The smallest model made the positive charge immovable by unit of an element, which carries all the properties of assuming it-to be spread over the total volume of the the element is called an atom.
    [Show full text]
  • Ab Initio Calculation of Energy Levels for Phosphorus Donors in Silicon
    Ab initio calculation of energy levels for phosphorus donors in silicon J. S. Smith,1 A. Budi,2 M. C. Per,3 N. Vogt,1 D. W. Drumm,1, 4 L. C. L. Hollenberg,5 J. H. Cole,1 and S. P. Russo1 1Chemical and Quantum Physics, School of Science, RMIT University, Melbourne VIC 3001, Australia 2Materials Chemistry, Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark 3Data 61 CSIRO, Door 34 Goods Shed, Village Street, Docklands VIC 3008, Australia 4Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC 3001, Australia 5Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Parkville, 3010 Victoria, Australia The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modelling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density functional theory. The wavefunction of the donor electron's ground state is found to have a form that is similar to an atomic s orbital, with an effective Bohr radius of 1.8 nm. The corresponding binding energy of this state is found to be 41 meV, which is in good agreement with the currently accepted value of 45.59 meV. We also calculate the energies of the excited 1s(T2) and 1s(E) states, finding them to be 32 and 31 meV respectively. These results constitute the first ab initio confirmation of the s manifold energy levels for phosphorus donors in silicon.
    [Show full text]
  • Niels Bohr and the Atomic Structure
    GENERAL ¨ ARTICLE Niels Bohr and the Atomic Structure M Durga Prasad Niels Bohr developed his model of the atomic structure in 1913 that succeeded in explaining the spectral features of hydrogen atom. In the process, he incorporated some non-classical features such as discrete energy levels for the bound electrons, and quantization of their angular momenta. Introduction MDurgaPrasadisa Professor of Chemistry An atom consists of two interacting subsystems. The first sub- at the University of system is the atomic nucleus, consisting of Z protons and A–Z Hyderabad. His research neutrons, where Z and A are the atomic number and atomic weight interests lie in theoretical respectively, of the concerned atom. The electrons that are part of chemistry. the second subsystem occupy (to zeroth order approximation) discrete energy levels, called the orbitals, according to the Aufbau principle with the restriction that no more than two electrons occupy a given orbital. Such paired electrons must have their spins in opposite direction (Pauli’s exclusion principle). The two subsystems interact through Coulomb attraction that binds the electrons to the nucleus. The nucleons in turn are trapped in the nucleus due to strong interactions. The two forces operate on significantly different scales of length and energy. Consequently, there is a clear-cut demarcation between the nuclear processes such as radioactivity or fission, and atomic processes involving the electrons such as optical spectroscopy or chemical reactivity. This picture of the atom was developed in the period between 1890 and 1928 (see the timeline in Box 1). One of the major figures in this development was Niels Bohr, who introduced most of the terminology that is still in use.
    [Show full text]
  • Module P11.3 Schrödinger's Model of the Hydrogen Atom
    FLEXIBLE LEARNING APPROACH TO PHYSICS Module P11.3 Schrödinger’s model of the hydrogen atom 1 Opening items 3.4 Ionization and degeneracy 1.1 Module introduction 3.5 Comparison of the Bohr and the Schrödinger 1.2 Fast track questions models of the hydrogen atom 1.3 Ready to study? 3.6 The classical limit 2 The early quantum models for hydrogen 4 Closing items 2.1 Review of the Bohr model 4.1 Module summary 2.2 The wave-like properties of the electron 4.2 Achievements 3 The Schrödinger model for hydrogen 4.3 Exit test 3.1 The potential energy function and the Exit module Schrödinger equation 3.2 Qualitative solutions for wavefunctions1 —1the quantum numbers 3.3 Qualitative solutions of the Schrödinger equation1—1the electron distribution patterns FLAP P11.3 Schrödinger’s model of the hydrogen atom COPYRIGHT © 1998 THE OPEN UNIVERSITY S570 V1.1 1 Opening items 1.1 Module introduction The hydrogen atom is the simplest atom. It has only one electron and the nucleus is a proton. It is therefore not surprising that it has been the test-bed for new theories. In this module, we will look at the attempts that have been made to understand the structure of the hydrogen atom1—1a structure that leads to a typical line spectrum. Nineteenth century physicists, starting with Balmer, had found simple formulae that gave the wavelengths of the observed spectral lines from hydrogen. This was before the discovery of the electron, so no theory could be put forward to explain the simple formulae.
    [Show full text]
  • Photon Model of Light Bohr Model of Hydrogen Application
    Energy Quantization Objective: To calculate the energy of a hydrogen atom; to describe the Bohr model; to describe the photon model of light; to know the range of energies for visible light; to describe what produces an absorption spectrum and an emission spectrum; to apply conservation of energy to determine the energy of a photon emitted or a photon absorbed by a hydrogen atom. Photon model of light There are two models of light that are useful to explain various experiments. One model of light describes it as an electromagnetic wave made up of a propagating wave made up of an oscillating electric field and oscillating magnetic field (in a plane perpendicular to the electric field). The color of light depends on its wavelength (or frequency where λf = c in a vacuum). Light can be made up of many electromagnetic waves of various colors giving you what is called a spectrum. White light is made up of equal amounts of all of the colors of the visible spectrum. Another model of light describes it as a collection of particles called photons. These photons have no rest mass but do have energy (kinetic energy). The energy of a photon is E = hf where h is Planck’s constant and f is the frequency of the light. Thus the “color” of a photon depends on its energy. Visible light is a small region of the entire range of possible energies of photons. The entire range is called the electromagnetic spectrum which ranges from gamma rays with very high energy to radio with very low energy.
    [Show full text]
  • Bohr Model of Hydrogen Atom
    Bohr Model of Hydrogen Atom 1 Postulates of Bohr Model The electron revolves in discrete orbits around the nucleus without radiating any energy, contrary to what classical electromagnetism principle. In these orbits, the electron's acceleration does not result in radiation and energy loss. These discrete orbits are called stationary orbits. The electron cannot have any other orbit in between the discrete ones. The angular momentum of electrons in these orbits is an integral multiple of the reduced Planck's constant. mvr = nħ 2 Electron loses energy only when it jumps from one allowed energy level to another allowed energy level. It radiates energy in the form of electromagnetic radiation with a frequency ν determined by the energy difference of the levels according to the Planck relation: E2 -E1 = hν Bohr assumed that during a jump a discrete or quantum of energy was radiated. Bohr explained the quantization of the radiation emitted by the discreteness of the atomic energy levels. Bohr did not believe in the existence of photons. 3 According to the Maxwell theory the frequency ν of classical radiation is equal to the rotation frequency ν of the electron in its orbit, with harmonics as integer multiples of this frequency. This result is obtained from the Bohr model for jumps between energy levels En and En−k when k is much smaller than n. These jumps reproduce the frequency of the kth harmonic of orbit n. For sufficiently large values of n the two orbits involved in the emission process have nearly the same rotation frequency, thus giving credence to the classical orbital frequency.
    [Show full text]
  • One Hundred Years of Bohr Model
    GENERAL ARTICLE One Hundred Years of Bohr Model Avinash Khare In this article I shall present a brief review of the hundred-year young Bohr model of the atom. In particular, I will ¯rst introduce the Thomson and the Rutherford models of atoms, their shortcom- ings and then discuss in some detail the develop- ment of the atomic model by Niels Bohr. Fur- ther, I will mention its re¯nements at the hand of Sommerfeld and also its shortcomings. Finally, I Avinash Khare is Raja will discuss the implication of this model in the Ramanna Fellow at IISER, Pune. His current interests development of quantum mechanics. are in the areas of low The `Bohr atom' has just completed one hundred years dimensional field theory, nonlinear dynamics and and it is worth recalling how it emerged, its salient fea- supersymmetric quantum tures, its shortcomings as well as the role it played in mechanics. Besides, he is the development of quantum mechanics. passionate about teaching an well as popularizing Thomson Model of Atoms science at school and college level. Till 1896, the popular view was that the atom was the basic constituent of matter. The ¯rst important clue regarding the internal structure of atoms came with the discovery of spontaneous radiation, ¯rst identi¯ed by Becquerel in 1896. The very existence of atomic radia- tion strongly suggested that atoms were not indivisible. With the discovery of the electron in 1897, J J Thomson was convinced that electrons must be fundamental con- stituents of matter and this led to his corpuscular theory of matter.
    [Show full text]
  • Section 28-2: Models of the Atom
    Answer to Essential Question 28.1: (a) In general, four energy levels give six photon energies. One way to count these is to start with the highest level, –12 eV. An electron starting in the –12 eV level can drop to any of the other three levels, giving three different photon energies. An electron starting at the –15 eV level can drop to either of the two lower levels, giving two more photon energies. Finally, an electron can drop from the –21 eV level to the –31 eV level, giving one more photon energy (for a total of six). (b) The minimum photon energy corresponds to the 3 eV difference between the –12 eV level and the –15 eV level. The maximum photon energy corresponds to the 19 eV difference between the –12 eV level and the –31 eV level. 28-2 Models of the Atom It is amazing to think about how far we have come, in terms of our understanding of the physical world, in the last century or so. A good example of our progress is how much our model of the atom has evolved. Let’s spend some time discussing the evolution of atomic models. Ernest Rutherford probes the plum-pudding model J. J. Thomson, who discovered the electron in 1897, proposed a plum-pudding model of the atom. In this model, electrons were thought to be embedded in a ball of positive charge, like raisins are embedded in a plum pudding. Ernest Rutherford (1871 - 1937) put this model to the test by designing an experiment that involved firing alpha particles (helium nuclei) at a very thin film of gold.
    [Show full text]