Ion Exchange
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Making Decisions About Water and Wastewater for Aqueous Operation
Making Decisions about Water and Wastewater for Aqueous Operation John F. Russo Chapter 2.17 Handbook for Critical Cleaning Editor-in-Chief Barbara Kanegsberg Reprinted with permission from CRC Press www.crcpress.com INTRODUCTION..................................................................................................................................3 TYPICAL CLEANING SYSTEM............................................................................................................3 OPERATIONAL SITUATIONS OF TYPICAL USER ...............................................................................4 Determining the Water Purity Requirements .........................................................................................4 Undissolved Contaminants............................................................................................................4 Dissolved Contaminants...............................................................................................................4 Undissolved and Dissolved Contaminants........................................................................................5 Other Conditions...........................................................................................................................5 Determining the Wastewater Volume Produced .....................................................................................6 Source Water Trea tment .....................................................................................................................6 No -
Ion Exchange and Disposal Issues Associated with the Brine Waste Stream
FWRJ Ion Exchange and Disposal Issues Associated With the Brine Waste Stream Julie Karleskint, Daniel Schmidt, Robert Anderson, Jayson Page, and A.J. Berndt he City of Arcadia recently completed from the local water supply authority, it was Julie Karleskint, P.E., is a senior construction of a new 1.5-mil-gal-per- determined that ion exchange would be the associate with Hazen and Sawyer in Tday (mgd) water treatment plant most cost-effective option for construction. A Sarasota. Daniel Schmidt, P.E., is a (WTP) using ion exchange technology to re- reduction in capacity was also provided since senior associate with Hazen and Sawyer place its 3-mgd lime softening WTP. The lime the City’s water supply source, groundwater in Tampa. Robert Anderson, P.E., is a plant had reached the end of its serviceable life from the intermediate aquifer, was limited senior associate with Hazen and Sawyer and the treatment of groundwater for the re- based on current pumping limitations and in Orlando. Jayson Page, P.E., is a moval of radionuclides, hardness, sulfides, or- permitted capacity. senior associate with Hazen and Sawyer ganic carbon, and fluoride was desired in The groundwater is supplied from six order to provide safe drinking water to the wells, approximately 350 ft deep and located in Coral Gables. A.J. Berndt is the utility community. After evaluating several treatment within a 1-mi radius of the plant. A summary director for the City of Arcadia. technologies, including lime treatment, of the water quality from the wellfield is shown nanofiltration, ion exchange, and purchases in Table 1. -
Troubleshooting Activated Sludge Processes Introduction
Troubleshooting Activated Sludge Processes Introduction Excess Foam High Effluent Suspended Solids High Effluent Soluble BOD or Ammonia Low effluent pH Introduction Review of the literature shows that the activated sludge process has experienced operational problems since its inception. Although they did not experience settling problems with their activated sludge, Ardern and Lockett (Ardern and Lockett, 1914a) did note increased turbidity and reduced nitrification with reduced temperatures. By the early 1920s continuous-flow systems were having to deal with the scourge of activated sludge, bulking (Ardem and Lockett, 1914b, Martin 1927) and effluent suspended solids problems. Martin (1927) also describes effluent quality problems due to toxic and/or high-organic- strength industrial wastes. Oxygen demanding materials would bleedthrough the process. More recently, Jenkins, Richard and Daigger (1993) discussed severe foaming problems in activated sludge systems. Experience shows that controlling the activated sludge process is still difficult for many plants in the United States. However, improved process control can be obtained by systematically looking at the problems and their potential causes. Once the cause is defined, control actions can be initiated to eliminate the problem. Problems associated with the activated sludge process can usually be related to four conditions (Schuyler, 1995). Any of these can occur by themselves or with any of the other conditions. The first is foam. So much foam can accumulate that it becomes a safety problem by spilling out onto walkways. It becomes a regulatory problem as it spills from clarifier surfaces into the effluent. The second, high effluent suspended solids, can be caused by many things. It is the most common problem found in activated sludge systems. -
Chemical Industry Wastewater Treatment
CHEMICAL INDUSTRY WASTEWATER TREATMENT Fayza A. Nasr\ Hala S. Doma\ Hisham S Abdel-Halim", Saber A. El-Shafai* * Water Pollution Research department, National Research Centre, Cairo, Egypt "Faculty of Engineering, Cairo University, Cairo, Egypt Abstract Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg02/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg02/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBC) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law. Therefore, the characteristics of chemical industrial wastewater determine which treatment system to utilize. Based on laboratory results TESCE, Vol. 30, No.2 <@> December 2004 engineering design of each treatment system was developed and cost estimate prepared. Key words: chemical industry, wastewater, treatment, chemical, biological Introduction The chemical industry is of importance in terms of its impact on the environment. -
Industrial Wastewater Treatment Technologies Fitxategia
INDUSTRIAL WASTEWATER TREATMENT TECHNOLOGIES Image by Frauke Feind from Pixabay licensed under CC0 Estibaliz Saez de Camara Oleaga & Eduardo de la Torre Pascual Faculty of Engineering Bilbao (UPV/EHU) Department of Chemical and Environmental Engineering Industrial Wastewaters (IWW) means the water or liquid that carries waste from industrial or processes, if it is distinct from domestic wastewater. Desalination plant “Rambla Morales desalination plant (Almería - Spain)” by David Martínez Vicente from Flickr licensed under CC BY 2.0 IWW may result from any process or activity of industry which uses water as a reactant or for transportation of heat or materials. 2 Characteristics of wastewater from industrial sources vary with the type and the size of the facility and the on-site treatment methods, if any. Because of this variation, it is often difficult to define typical operating conditions for industrial activities. Options available for the treatment of IWW are summarized briefly in next figure. To introduce in a logical order in the description of treatment techniques, the relationship between pollutants and respective typical treatment technology is taken as reference. 1. Removal of suspended solids and insoluble liquids 2. Removal of inorganic, non-biodegradable or poorly degradable soluble content 3. Removal of biodegradable soluble content 3 Range of wastewater treatments in relation to type of contaminants. Source: BREF http://eippcb.jrc.ec.europa.eu/reference/ 4 3.1. CLASSIFICATION OF INDUSTRIAL EFFLUENTS CLASSIFICATION OF EFFLUENTS -
Review of the Ion Exchange Filtration Process and Materials Used August 4, 2020
National Organic Standards Board Handli ng Subcommittee Proposal Review of the Ion Exchange Filtration Process and Materials Used August 4, 2020 Background: In an August 27, 2019, memo the National Organic Program requested the NOSB provide recommendations related to the process of ion exchange filtration in the handling of organic products. It has become clear that there is inconsistency between certifiers in how they approve or disapprove this type of process. Some certifiers require only the solutions that are used to recharge the ion exchange membranes be on the National List at § 205.605. Others require that all materials, including ion exchange membranes and resins be on the National List. The National Organic Program provided clarification to certifying agents in an email sent on May 7, 2019, that nonagricultural substances used in the ion-exchange process must be present on the National List. This would include, but is not limited to, resins, membranes and recharge materials. Originally, the NOP asked all operations to come into compliance with the statement above by May 1, 2020. However, in response to requests for clarification of NOP’s rationale, as well as requests to extend the timeline for implementation, the NOP delayed the implementation date in order to gather more information and requested that NOSB review the issue. Manufacturers and certifiers who wish to continue allowance of the ion exchange process disagree with some of the findings of the NOP on this complex issue. The different opinions of the need for resins, recharge materials and membranes to be present on the National List, as well as how they interact with each other and the liquid run through the process, is complicated and the NOP therefore asked the NOSB to take on this issue. -
Ozone Questions and Answers
FRom THE WORLd’s #1 IN-flooR CLEANING SYSTEMS CompANY OZONE QUESTIONS AND ANSWERS WHY OZONATE MY POOL OR SPA? ANSWER: Pool owners who are concerned about the harmful effects of chlorine will be interested in reducing chlorine levels in the water. In particular, pools with chlorine-only systems can be harmful as the skin’s pores open up and ingest chlorine into the body. In some cases competitive swimmers will refuse to swim in a chlorine-only pool, and Olympic pools are generally ozonated for this reason. WHAT IS OZONE? ANSWER: Ozone is active oxygen, O3. Ozone occurs naturally in the earth’s atmosphere to protect us from the sun’s harmful rays. As single oxygen atoms are very unstable, they travel around in pairs which are written scientifically as O2. Ozone is made up of three oxygen atoms written as O3. When activated, it is called Triatomic Oxygen. HOW DOES OZONE WORK? ANSWER: Ozone is up to 50 times more powerful at killing bacteria and viruses than traditional pool chemicals and up to 3000 times faster. Ozone is faster than chlorine at killing bacteria because chlorine needs to diffuse through the cell wall and disrupt the bacteria’s metabolism. Ozone, however ruptures the cell wall from the outside causing the cell’s contents to fall apart. This process is known as “cellular lyses”. This process takes place in about 2 seconds. With ozone, after the destruction of the cell all that is left are carbon dioxide, cell debris and water. Once this process is complete ozone reverts back to oxygen O2; which makes ClearO3 a very eco-friendly product. -
Guideline on the Quality of Water for Pharmaceutical Use
20 July 2020 EMA/CHMP/CVMP/QWP/496873/2018 Committee for Medicinal Products for Human Use (CHMP) Committee for Medicinal Products for Veterinary Use (CVMP) Guideline on the quality of water for pharmaceutical use Draft agreed by Quality Working Party 7 June 2018 Adopted by CHMP for release for consultation 28 June 2018 Adopted by CVMP for release for consultation 19 July 2018 Start of public consultation 15 November 2018 End of consultation (deadline for comments) 15 May 2019 Agreed by GMDP IWG 5 March 2020 Agreed by BWP 18 March 2020 Agreed by QWP 6 May 2020 Adopted by CHMP for publication 28 May 2020 Adopted by CVMP for publication 18 June 2020 Date for coming into effect 1 February 2021 This guideline replaces the Note for guidance on quality of water for pharmaceutical use (CPMP/QWP/158/01 EMEA/CVMP/115/01) and CPMP Position Statement on the Quality of Water used in the production of Vaccines for parenteral use (EMEA/CPMP/BWP/1571/02 Rev.1). Keywords Guideline, water for injections, purified water, Ph. Eur. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us An agency of the European Union Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Guideline on the quality of water for pharmaceutical use Table of contents Executive summary ..................................................................................... 3 1. Introduction (background) ...................................................................... 3 2. Scope....................................................................................................... 4 3. -
Find Your Brand
Find your brand - Ratings for 173 bottled waters The Environmental Working Group rated 173 bottled waters for transparency - what each company is willing to share with you about where their water comes from, how or if it's treated, and how pure it is. More than half of all bottled waters flunked. Bottom line? Drink plenty of water, but avoid bottled water when you can. It pollutes the environment and is often nothing more than tap water. When you must, choose brands with high scores (clear labeling) and advanced treatment. PRODUCT GRADE (Stop & Shop) Acadia Natural F Spring Water (Stop & Shop) Electrolyte Enhanced Water D ! ! (Walgreens) Drinking Water F ! ! (Walgreens) Pure Drinking Water ✓ C ! ! (Walgreens) Spring Water D ! ! 365 Everyday Value Spring Water D ! ! 7 Select Spring Water D ! ! Acqua Panna Natural Spring Water C ! ! Alhambra Crystal-Fresh Purified Water ✓ C ! ! Alhambra Jr. Sport Crystal-Fresh Purified Water ✓ D ! ! American Falls Purified Drinking Water ✓ D ! ! Angel Fire Water Drinking Water F ! ! Aquafina Purified Drinking Water ✓ D ! ! Aquarius Spring! Natural Spring Water C ! ! Archer Farms Natural Spring Water F ! ! Arrowhead Mountain Spring Water C ! ! Athena Purified Water with Minerals Added ✓ F ! ! Atlanta Bread Natural Spring Water D ! ! Belmont Springs Purified Water ✓ C ! ! Big Y Natural Spring Water F ! ! Bristol Farms Drinking Water F ! ! Calistoga Sparkling Mineral Water C ! ! Chukchansi Gold Resort and Casino Purified F ! ! PRODUCT GRADE Drinking Water Ciao Acqua Naturale Natural Spring Water F ! ! Cool -
Reverse Osmosis Treatment, Rejection of Carbon Dioxide, And
Evaluating the Impact of Reverse Osmosis Treatment on Finished Water Carbon Dioxide Concentration and pH WATERCON2012 March 21, 2012 Presented By: Jerry Phipps, P.E. Outline • Purpose • Background • Reverse Osmosis (RO) Fundamentals • Post-Treatment Processes • Pertinent Aquatic Chemistry • Case Studies • Conclusions and Recommendations • Questions Purpose • Review RO and carbonate chemistry fundamentals • Review data from full scale projects to determine change in carbon dioxide and pH from feed to permeate stream Background • The Reverse Osmosis (RO) process uses a semipermeable membrane to separate an influent stream into two streams, a purified permeate stream and a concentrated reject stream • Many references indicate that dissolved gases such as carbon dioxide (CO2) may pass through the membrane with no rejection • The combination of low alkalinity and high carbon dioxide results in an aggressive permeate stream with a lower pH than the influent stream Reverse Osmosis Membranes The most common RO membrane material today is aromatic polyamide, typically in the form of thin-film composites. They consist of a thin film of membrane, bonded to layers of other porous materials that are tightly wound to support and strengthen the membrane. Flow Recovery • Percent recovery is a key design parameter • Defined as permeate flow / influent flow • Recovery is limited by solubility products, Ksp • Typical value for groundwater is ~75%-85%, but varies with application • Example: Influent stream = 100 gpm, 75% recovery. Permeate stream = 75 gpm, -
Difference Between Mineral Water and Spring Water Strictly Speaking, Water Is Water
Difference between Mineral Water and Spring Water Strictly speaking, water is water. That is to say, all water on Earth is a compound of two hydrogen and one oxygen molecule. The difference between various types of bottled waters lies mainly in where the source is located and what processes the water goes through before it is sold to consumers. Not all bottled waters are recommended for drink- ing, so it is important to know the difference if your health plan includes increasing water intake or avoiding certain types of beverages. Some types of bottled water, such as well or spring, get their designation from their origi- nal source. Mineral water must contain a specified amount of trace minerals naturally before it can be sold. Distilled or purified water must be put through a filtration or me- chanical process in order to remove contaminants and minerals. Some water types may actually fit into several different categories- distilled water, for example, is also purified by definition. Spring and well waters make excellent refreshments during and afterexercise, but distilled water lacks trace minerals and may not have a satisfying taste. Mineral water may have a natural sparkle and refreshing taste, but a little may go a long way. Here's a closer look at each type of water and how each one fits in an everyday world. 1. Well water. Well water could be the source of other types of consumable bottle waters such as 'drinking' or regular tap water. The main definition of 'well water' is water that has been stored in permeable rocks and soil. -
Reverse Osmosis As a Pretreatment of Ion Exchange Equipment at PSE
Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ABSTRACT REVERSE OSMOSIS AS A PRETREATMENT FOR ION EXCHANGE AT PSE&G'S HUDSON GENERATING STATION by Steven Leon Public Service Electric and Gas Company's Hudson Generating Station has historically had problems providing sufficient high quality water for its two once through, supercritical design boilers. The station requires over 60 million gallons annually to compensate for system losses.