On Voltage Graphs and Cages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Cycle Double Cover Problem
On The Cycle Double Cover Problem Ali Ghassâb1 Dedicated to Prof. E.S. Mahmoodian Abstract In this paper, for each graph , a free edge set is defined. To study the existence of cycle double cover, the naïve cycle double cover of have been defined and studied. In the main theorem, the paper, based on the Kuratowski minor properties, presents a condition to guarantee the existence of a naïve cycle double cover for couple . As a result, the cycle double cover conjecture has been concluded. Moreover, Goddyn’s conjecture - asserting if is a cycle in bridgeless graph , there is a cycle double cover of containing - will have been proved. 1 Ph.D. student at Sharif University of Technology e-mail: [email protected] Faculty of Math, Sharif University of Technology, Tehran, Iran 1 Cycle Double Cover: History, Trends, Advantages A cycle double cover of a graph is a collection of its cycles covering each edge of the graph exactly twice. G. Szekeres in 1973 and, independently, P. Seymour in 1979 conjectured: Conjecture (cycle double cover). Every bridgeless graph has a cycle double cover. Yielded next data are just a glimpse review of the history, trend, and advantages of the research. There are three extremely helpful references: F. Jaeger’s survey article as the oldest one, and M. Chan’s survey article as the newest one. Moreover, C.Q. Zhang’s book as a complete reference illustrating the relative problems and rather new researches on the conjecture. A number of attacks, to prove the conjecture, have been happened. Some of them have built new approaches and trends to study. -
LDPC Codes from Voltage Graphs
ISIT 2008, Toronto, Canada, July 6 - 11, 2008 LDPC codes from voltage graphs Christine A. Kelley Judy L. Walker Department of Mathematics Department of Mathematics University of Nebraska-Lincoln University of Nebraska–Lincoln Lincoln, NE 68588, USA. Lincoln, NE 68588, USA. Email: [email protected] Email: [email protected] Abstract— Several well-known structure-based constructions we review the terminology of voltage graphs. In Section III, of LDPC codes, for example codes based on permutation and we show how graph-based codes can be obtained algebraically circulant matrices and in particular, quasi-cyclic LDPC codes, from voltage graphs, and illustrate this using the Sridhara- can be interpreted via algebraic voltage assignments. We explain this connection and show how this idea from topological graph Fuja-Tanner (SFT) LDPC codes and array-based LDPC codes theory can be used to give simple proofs of many known as examples. In Section IV, the notion of abelian-inevitable properties of these codes. In addition, the notion of abelian- cycles is introduced and the isomorphism classes of subgraphs inevitable cycle is introduced and the subgraphs giving rise to (or equivalently, matrix substructures) that give rise to these these cycles are classified. We also indicate how, by using more cycles in the LDPC Tanner graph are identified and classified. sophisticated voltage assignments, new classes of good LDPC codes may be obtained. The results presented here correct a result used in [16], [20], and, subsequently, extend the work from [16]. Ongoing work I. INTRODUCTION addressing how this method may be used to construct new Graph-based codes have attracted widespread interest due families of LDPC and other graph-based codes is outlined in to their efficient decoding algorithms and remarkable perfor- Section V. -
Large Girth Graphs with Bounded Diameter-By-Girth Ratio 3
LARGE GIRTH GRAPHS WITH BOUNDED DIAMETER-BY-GIRTH RATIO GOULNARA ARZHANTSEVA AND ARINDAM BISWAS Abstract. We provide an explicit construction of finite 4-regular graphs (Γk)k∈N with girth Γk k → ∞ as k and diam Γ 6 D for some D > 0 and all k N. For each dimension n > 2, we find a → ∞ girth Γk ∈ pair of matrices in SLn(Z) such that (i) they generate a free subgroup, (ii) their reductions mod p generate SLn(Fp) for all sufficiently large primes p, (iii) the corresponding Cayley graphs of SLn(Fp) have girth at least cn log p for some cn > 0. Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most O(log p). This gives infinite sequences of finite 4-regular Cayley graphs as in the title. These are the first explicit examples in all dimensions n > 2 (all prior examples were in n = 2). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky-Phillips-Sarnak’s classical con- structions, these new graphs are the only known explicit large girth Cayley graph expanders with bounded diameter-by-girth ratio. 1. Introduction The girth of a graph is the edge-length of its shortest non-trivial cycle (it is assigned to be infinity for an acyclic graph). The diameter of a graph is the greatest edge-length distance between any pair of its vertices. We regard a graph Γ as a sequence of its connected components Γ = (Γk)k∈N each of which is endowed with the edge-length distance. -
Girth in Graphs
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMBINATORIAL THEORY. Series B 35, 129-141 (1983) Girth in Graphs CARSTEN THOMASSEN Mathematical institute, The Technicai University oJ Denmark, Building 303, Lyngby DK-2800, Denmark Communicated by the Editors Received March 31, 1983 It is shown that a graph of large girth and minimum degree at least 3 share many properties with a graph of large minimum degree. For example, it has a contraction containing a large complete graph, it contains a subgraph of large cyclic vertex- connectivity (a property which guarantees, e.g., that many prescribed independent edges are in a common cycle), it contains cycles of all even lengths module a prescribed natural number, and it contains many disjoint cycles of the same length. The analogous results for graphs of large minimum degree are due to Mader (Math. Ann. 194 (1971), 295-312; Abh. Math. Sem. Univ. Hamburg 31 (1972), 86-97), Woodall (J. Combin. Theory Ser. B 22 (1977), 274-278), Bollobis (Bull. London Math. Sot. 9 (1977), 97-98) and Hlggkvist (Equicardinal disjoint cycles in sparse graphs, to appear). Also, a graph of large girth and minimum degree at least 3 has a cycle with many chords. An analogous result for graphs of chromatic number at least 4 has been announced by Voss (J. Combin. Theory Ser. B 32 (1982), 264-285). 1, INTRODUCTION Several authors have establishedthe existence of various configurations in graphs of sufficiently large connectivity (independent of the order of the graph) or, more generally, large minimum degree (see, e.g., [2, 91). -
Computing the Girth of a Planar Graph in Linear Time∗
Computing the Girth of a Planar Graph in Linear Time∗ Hsien-Chih Chang† Hsueh-I Lu‡ April 22, 2013 Abstract The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n5/4 log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time. 1 Introduction Let G be an edge-weighted simple graph, i.e., G does not contain multiple edges and self- loops. We say that G is unweighted if the weight of each edge of G is one. A cycle of G is simple if each node and each edge of G is traversed at most once in the cycle. The girth of G, denoted girth(G), is the minimum weight of all simple cycles of G. For instance, the girth of each graph in Figure 1 is four. As shown by, e.g., Bollobas´ [4], Cook [12], Chandran and Subramanian [10], Diestel [14], Erdos˝ [21], and Lovasz´ [39], girth is a fundamental combinatorial characteristic of graphs related to many other graph properties, including degree, diameter, connectivity, treewidth, and maximum genus. We address the problem of computing the girth of an n-node graph. Itai and Rodeh [28] gave the best known algorithm for the problem, running in time O(M(n) log n), where M(n) is the time for multiplying two n × n matrices [13]. -
The Line Mycielskian Graph of a Graph
[VOLUME 6 I ISSUE 1 I JAN. – MARCH 2019] e ISSN 2348 –1269, Print ISSN 2349-5138 http://ijrar.com/ Cosmos Impact Factor 4.236 THE LINE MYCIELSKIAN GRAPH OF A GRAPH Keerthi G. Mirajkar1 & Veena N. Mathad2 1Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad - 580001, Karnataka, India 2Department of Mathematics, University of Mysore, Manasagangotri, Mysore-06, India Received: January 30, 2019 Accepted: March 08, 2019 ABSTRACT: In this paper, we introduce the concept of the line mycielskian graph of a graph. We obtain some properties of this graph. Further we characterize those graphs whose line mycielskian graph and mycielskian graph are isomorphic. Also, we establish characterization for line mycielskian graphs to be eulerian and hamiltonian. Mathematical Subject Classification: 05C45, 05C76. Key Words: Line graph, Mycielskian graph. I. Introduction By a graph G = (V,E) we mean a finite, undirected graph without loops or multiple lines. For graph theoretic terminology, we refer to Harary [3]. For a graph G, let V(G), E(G) and L(G) denote the point set, line set and line graph of G, respectively. The line degree of a line uv of a graph G is the sum of the degree of u and v. The open-neighborhoodN(u) of a point u in V(G) is the set of points adjacent to u. For each ui of G, a new point uˈi is introduced and the resulting set of points is denoted by V1(G). Mycielskian graph휇(G) of a graph G is defined as the graph having point set V(G) ∪V1(G) ∪v and line set E(G) ∪ {xyˈ : xy∈E(G)} ∪ {y ˈv : y ˈ ∈V1(G)}. -
Lecture 13: July 18, 2013 Prof
UChicago REU 2013 Apprentice Program Spring 2013 Lecture 13: July 18, 2013 Prof. Babai Scribe: David Kim Exercise 0.1 * If G is a regular graph of degree d and girth ≥ 5, then n ≥ d2 + 1. Definition 0.2 (Girth) The girth of a graph is the length of the shortest cycle in it. If there are no cycles, the girth is infinite. Example 0.3 The square grid has girth 4. The hexagonal grid (honeycomb) has girth 6. The pentagon has girth 5. Another graph of girth 5 is two pentagons sharing an edge. What is a very famous graph, discovered by the ancient Greeks, that has girth 5? Definition 0.4 (Platonic Solids) Convex, regular polyhedra. There are 5 Platonic solids: tetra- hedron (four faces), cube (\hexahedron" - six faces), octahedron (eight faces), dodecahedron (twelve faces), icosahedron (twenty faces). Which of these has girth 5? Can you model an octahedron out of a cube? Hint: a cube has 6 faces, 8 vertices, and 12 edges, while an octahedron has 8 faces, 6 vertices, 12 edges. Definition 0.5 (Dual Graph) The dual of a plane graph G is a graph that has vertices corre- sponding to each face of G, and an edge joining two neighboring faces for each edge in G. Check that the dual of an dodecahedron is an icosahedron, and vice versa. Definition 0.6 (Tree) A tree is a connected graph with no cycles. Girth(tree) = 1. For all other connected graphs, Girth(G) < 1. Definition 0.7 (Bipartite Graph) A graph is bipartite if it is colorable by 2 colors, or equiva- lently, if the vertices can be partitioned into two independent sets. -
Dynamic Cage Survey
Dynamic Cage Survey Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809, U.S.A. [email protected] Robert Jajcay Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809, U.S.A. [email protected] Department of Algebra Comenius University Bratislava, Slovakia [email protected] Submitted: May 22, 2008 Accepted: Sep 15, 2008 Version 1 published: Sep 29, 2008 (48 pages) Version 2 published: May 8, 2011 (54 pages) Version 3 published: July 26, 2013 (55 pages) Mathematics Subject Classifications: 05C35, 05C25 Abstract A(k; g)-cage is a k-regular graph of girth g of minimum order. In this survey, we present the results of over 50 years of searches for cages. We present the important theorems, list all the known cages, compile tables of current record holders, and describe in some detail most of the relevant constructions. the electronic journal of combinatorics (2013), #DS16 1 Contents 1 Origins of the Problem 3 2 Known Cages 6 2.1 Small Examples . 6 2.1.1 (3,5)-Cage: Petersen Graph . 7 2.1.2 (3,6)-Cage: Heawood Graph . 7 2.1.3 (3,7)-Cage: McGee Graph . 7 2.1.4 (3,8)-Cage: Tutte-Coxeter Graph . 8 2.1.5 (3,9)-Cages . 8 2.1.6 (3,10)-Cages . 9 2.1.7 (3,11)-Cage: Balaban Graph . 9 2.1.8 (3,12)-Cage: Benson Graph . 9 2.1.9 (4,5)-Cage: Robertson Graph . 9 2.1.10 (5,5)-Cages . -
Properties Ii1: Girth and Circumference
Iernat. J. Math. & Math. Si. 685 Vol. 2 No. 4 (1979) 685-692 A GRAPH AND ITS COMPLEMENT WITH SPECIFIED PROPERTIES II1: GIRTH AND CIRCUMFERENCE JIN AKIYAMA AND FRANK HARARY Department of Mathematics The University of Michigan Ann Arbor, Michigan 48109 U.S.A. (Received April 5, 1979) ABSTRACT. In this series, we investigate the conditions under which both a graph G and its complement G possess certain specified properties. We now characterize all the graphs G such that both G and G have the same girth. We also determine all G such that both G and G have circumference 3 or4. KEF WORDS AND PHRASES. Graph, Complement, Girth, bmfence. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 05C99. iVisiting Scholar, 1978-79, from Nippon Ika University, Kawasaki, Japan. 2Vice-President, Calcutta Mathematical Society, 1978 and 1979. 686 J. AKIYAMA AND F. HARARY I. NOTATIONS AND BACKGROUND. In the first paper [2] in this series, we found all graphs G such that both G and its complement G have (a) connectivity 1, (b) line-connectivity 1, (c) mo cycles, (d) only even cycles, and other properties. Continuing this study, we determined in [3] the graphs G for which G and 6 are (a) block-graphs, (b) middle graphs, () bivariegated, and (d) n'th subdivision graphs. Now we concentrate on the two invariants concerning cycle lengths- girth and circum- ference. We will see that whenever G and G have the same girth g then g 3 or 5 only. For the circumference c we study only the cases where both G and G have c 3 or 4 Following the notation and of the G + G of two terminology [4], join 1 2 graphs is the union of G and G with the sets 1 2 complete bigraph having point V and V We will require a related ternary operation denoted G + G + G 1 2 1 2 3 on three disjoint graphs, defined as the union of the two joins G + G and 1 2 G + G Thus, this resembles the composition of the path not with just 2 3 P3 one other graph but with three graphs, one for each point; Figure 1 illustrates the "random" graph K e K + K + K Of course the quaternary operation 4 1 2 1 G + G + G + G is defined similarly. -
On the Genus of Symmetric Groups by Viera Krñanová Proulx
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 266, Number 2, August 1981 ON THE GENUS OF SYMMETRIC GROUPS BY VIERA KRÑANOVÁ PROULX Abstract. A new method for determining genus of a group is described. It involves first getting a bound on the sizes of the generating set for which the corresponding Cayley graph could have smaller genus. The allowable generating sets are then examined by methods of computing average face sizes and by voltage graph techniques to find the best embeddings. This method is used to show that genus of the symmetric group S5 is equal to four. The voltage graph method is used to exhibit two new embeddings for symmetric groups on even number of elements. These embeddings give us a better upper bound than that previously given by A. T. White. A Cayley graph corresponding to a generating set S of a group G consists of a vertex set labeled by the elements of the group G and a set of directed labeled edges, = {(Mgt>)|H,v E G, g E S, ug = v}. The genus of a group G is defined to be minimal genus among all its Cayley graphs. The purpose of this paper is to present a new method for determining the genus of a group. It works like this. First, we use the method of voltage graphs or any other method to get a reasonably good bound on the genus of this group. We then employ Theorem 1 to get a bound on the size and conditions on the structure of a generating set for which the corresponding Cayley graph could have smaller genus. -
Voltage Graphs, Group Presentations and Cages
Voltage Graphs, Group Presentations and Cages Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809 [email protected] Submitted: Dec 2, 2003; Accepted: Jan 29, 2004; Published: Feb 14, 2004 Abstract We construct smallest known trivalent graphs for girths 16 and 18. One con- struction uses voltage graphs, and the other coset enumeration techniques for group presentations. AMS Subject Classifications: 05C25, 05C35 1 Introduction The cage problem asks for the construction of regular graphs with specified degree and girth. Reviewing terminology, we recall that the girth of a graph is the length of a shortest cycle, that a (k, g)-graph is regular graph of degree k and girth g,andthata(k, g)-cage is a(k, g)-graph of minimum possible order. Define f(k, g) to be this minimum. We focus on trivalent (or cubic) cages. It is well known that ( 2g/2+1 ifgiseven f(3,g) ≥ 3 × 2(g−1)/2 − 2 ifgisodd This bound, the Moore bound, is achieved only for girths 5, 6, 8, and 12 [1, 4]. The problem of finding cages has been chronicled by Biggs [3] and others. In this note we give two new constructions of cage candidates using different methods. the electronic journal of combinatorics 11 (2004), #N2 1 2 A Girth 16 Lift of the Petersen Graph The first, and simplest, of the constructions begins with the Petersen graph (denoted P ), the smallest 3-regular graph of girth 5. We investigate graphs that can be constructed as lifts of the P , and discover a new graph, the smallest known trivalent graph of girth 16. -
Crossing Number Graphs
The Mathematica® Journal B E Y O N D S U D O K U Crossing Number Graphs Ed Pegg Jr and Geoffrey Exoo Sudoku is just one of hundreds of great puzzle types. This column pre- sents obscure logic puzzles of various sorts and challenges the readers to solve the puzzles in two ways: by hand and with Mathematica. For the lat- ter, solvers are invited to send their code to [email protected]. The per- son submitting the most elegant solution will receive a prize. ‡ The Brick Factory In 1940, the Hungarian mathematician Paul Turán was sent to a forced labor camp by the Nazis. Though every part of his life was brutally controlled, he still managed to do serious mathematics under the most extreme conditions. While forced to collect wire from former neighborhoods, he would be thinking about mathematics. When he found scraps of paper, he wrote down his theorems and conjectures. Some of these scraps were smuggled to Paul Erdős. One problem he developed is now called the brick factory problem. We worked near Budapest, in a brick factory. There were some kilns where the bricks were made and some open storage yards where the bricks were stored. All the kilns were connected to all the storage yards. The bricks were carried on small wheeled trucks to the storage yards. All we had to do was to put the bricks on the trucks at the kilns, push the trucks to the storage yards, and unload them there. We had a reasonable piece rate for the trucks, and the work itself was not difficult; the trouble was at the crossings.