Levels of Enzymes of the Pentose Phosphate Pathway in Pachysolen Tannophilus Y-2460 and Selected Mutants

Total Page:16

File Type:pdf, Size:1020Kb

Levels of Enzymes of the Pentose Phosphate Pathway in Pachysolen Tannophilus Y-2460 and Selected Mutants Levels of enzymes of the pentose phosphate pathway in Pachysolen tannophilus Y-2460 and selected mutants Anil H. Lachke Division of Biochemical Sciences, National Chemical Laboratory, Poona 411008, India and Thomas W. Jeffries US Department of Agriculture, Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2398, USA (Received 24 September 1985; revised 6 January 1986) The compositions of intracellular pentose phosphate pathway enzymes have been examined in mutants of Pachysolen tannophilus NRRL Y-2460 which possessed enhanced D-xylose fermentation rates. The levels of oxidoreductive enzymes involved in converting D-xylose to D-xylulose via xylitol were 1.5-14.7-fold higher in mutants than in the parent. These enzymes were still under inductive control by D-xylose in the mutants. The D-xylose reductase activity (EC 1.1.1.21) which catalyses the conversion of D-xylose to xylitol was supported with either NADPH or NADH as coenzyme in all the mutant strains. Other enzyme specific activities that generally increased were: xylitol dehydro- genase (EC 1.1.1.9), 1.2-1.6-fold; glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 1.9-2.6-fold; D-xylulose-5-phosphate phosphoketolase (EC 4.1.2.9), 1.2-2.61fold; and alcohol dehydrogenase (EC 1.1.1.1). 1.5-2.7-fold. The increase of enzymatic activities, 5.3-10.3-fold, occurring in D- xylulokinase (EC 2.7.1.17), suggested a pivotal role for this enzyme in utilization of D-xylose by these mutants. The best ethanol-producing mutant showed the highest ratio of NADH- to NADPH- linked D-xyloSe reductase activity and high levels of all other pentose phosphate pathway enzymes assayed. Keywords: Pentose phosphate pathway; Pachysolen tannophilus; D-xylose metabolism Introduction D-xylose is first reduced by an NADPH-linked D-xylose reductase (alditol:NADP+/NAD+ 1 -oxidoreductase, EC Xylans, the principal constituents of hemicelluloses, can be 1.1.1.21) to form xylitol. The reoxidation of xylitol to obtained from woody angiosperms (hardwoods) and agri- D-xylulose is then effected by another NAD-linked dehyd- cultural residues. Sugars derived from xylans offer potential rogenase (xylitol:NAD+ 2-oxidoreductase, D-xylulose feedstock for generating food and fuel. The hemicellulosic reductase, EC 1.1.19). D-Xylulose thus formed is then sugars can be recovered from lignocellulose more readily phosphorylated to form a key intermediate, D-xylulose-5- than glucose but are fermented with greater difficulty than phosphate. Beyond this point, much of the pathway is glucose or pure sugars.1 assumed from biochemical studies with other organisms. In recent years, numerous yeasts, particularly Pachy- In one route, phosphate acetylating enzyme, phospho- solen tannophilus,2 Candida shehatae,3 and Pichia stipitis4 ketolase (D-xylulose-5-phosphate D-glyceraldehyde-3- have been found to produce ethanol from D-xylose. Of phosphate-lyase, EC 4.1.2.9) converts D-xylulose-5-phos- these, P. tannophilus has been studied most extensively,5 phate to glyceraldehyde-3-phosphate and acetyl phosphate and a number of mutants exhibiting improved rates of D- in the presence of cocarboxylase and Mg2+. In another xylose fermentation have been obtained from the type route, D-xylulose-5-phosphate proceeds by way of epi- culture, P. tannophilus NRRL Y-2460.6 This research merase, isomerase, transketolase and transaldolase to form sought to characterize the parent strain and the mutants glyceraldehyde-3-phosphate and D-fructose-6-phosphate. biochemically in order to determine if altered levels of key Glyceraldehyde-3-phosphate is an intermediate in both enzymes could account for the improved performance of the pentose phosphate pathway (PPP) and Embden- the mutants. Meyerhof-Parnas (EMP) pathway.8-10 The net result of a In yeasts and moulds, D-xylose is converted to D-xylulose homoethanolic fermentation through this latter route in two enzymatic steps.7 In the oxidoreductive pathway, involving transketolase is that 3 mol of xylose yield 5 mol 1986 Butterworth & Co. (Publishers) Ltd Enzyme Microb. Technol., 1986, vol. 8, June 353 Papers of ethanol and 5 mol of carbon dioxide, i.e. 1.67 mol C2 filter sterilized in 10 × strength and either 4.5 or 6.0% per mol C5 utilized. Both the ATP and the ethanol yields D-xylose or D-glucose as sole carbon sources. An inoculum of this homoethanolic route are identical to those obtained was grown by transferring each strain from an agar slant with glucose via the Embden-Meyerhofpathway. into a 125 ml Erlenmeyer flask containing 50 ml of the The pathway for fermenting D-xylose by P. tannophilus medium and agitating at 100 rev min-1, 32°C, for 48 h. is poorly characterized. P. tannophilus unambiguously Inoculum cells were washed with sterile water and diluted exhibits an anaerobic fermentation of D-xylose; however it so that cells grown under different conditions would all forms significant quantities of acetic acid under anaerobic give the same initial absorbance at 525 nm.14 Five ml of conditions or when cells are grown aerobically on nitrate.11 each cell suspension containing on average 45 mg (±2) dry It is possible that this product could arise from phospho- weight (0.8g wet wt) cells was used as inoculum. The ketolase activity. We decided therefore to determine the strains were grown on a rotatory shaker (100 rev min-1 ) at enzymic activities of various PPP enzymes in parent and 32°C in 125ml Erlenmeyer flasks containing 50ml of previously obtained mutant yeast strains6 in order to better medium. The cells were harvested by centrifugation (7000 characterize the pathway and elucidate the rate-limiting rev min-1 , 20 min, 44°C) after 48 h and washed with step(s) in the overall process. potassium phosphate buffer (0.1 M, pH 7.1) containing The mutant strains examined here were enriched and 10 mM cysteine-HCl, 1 mM dithiothreitol, 1 mM EDTA, selected on the basis of their abilities to grow preferentially and 5 mM MgCl2. in broth and to form large colonies on agar with either nitrate or ammonia as nitrogen sources and with xylitol as a carbon source. Nitrate was chosen as the sole nitrogen Preparation of cell homogenates source for enrichment and selection because of its recog- The harvested yeast cells (4-6g), usually from six nized ability to induce higher levels of pentose phosphate Erlenmeyer flasks, were suspended in 15 ml 100 mM pathway enzymes in yeasts, fungi and plant cells.12,13 potassium phosphate buffer, pH 7.1, and placed in pre- Xylitol was chosen as the sole carbon source because it cooled thick-walled bottles containing 35 g (HCl-washed was restrictive for these cells, and it could be used to and rinsed in water) glass beads (0.5 mm diameter). This distinguish between fast- and slow-growing colonies on a mixture was broken in a Braun model cell homogenizer plate. The mutant strains examined have produced ethanol by agitating for 3 min while cooling to 1-5°Cwith liquid approximately twice as fast and in nearly 30% better yield CO2. The supernatant solution was separated from glass than the parent strain under the conditions employed? beads and cell debris by centrifugation (12 000 rev min-1 , The objective of the present work was to determine 30 min, 4-6°C) and used immediately for enzyme assays. intracellular levels of some of the enzymes of the PPP in the parent and isolated mutant strains, when grown under welldefined aerobic conditions. The results of this research Enzyme assays should be useful in future comparative biochemical studies NAD(H) and NADP(H)-dependent reduction or oxidation with C. shehatae, P. stipitis and other yeasts. of the polyol, ketose or aldose substrates by cell-free extracts were followed on a Gilford model 250 spectro- Materials and methods photometer at 340 nm using 1 cm light path quartz cuvettes thermostatically controlled at 30°C. The enzyme sample in Chemicals the assay was diluted appropriately to give a linear reaction D-Xylose, xylitol, D-xylulose; NAD; NADH; NADP; velocity for at least 5 min. In every assay, control recordings NADPH, type 1; lactic dehydrogenase, type 1 (LDH); were made without added cell homogenate, coenzyme or adenosine 5'-triphosphate, phosphoenol pyruvate, D- substrate, respectively. ε340 nm values were converted to xylulose, thiamin pyrophosphate, phosphoriboisomerase, NAD(P)H concentrations using ε (mM) = 6.22. pyruvate kinase, D-ribulose-5-phosphate 3-epimerase, and Activities of all enzymes are expressed as international D-ribose-5-phosphate were obtained from sigma Chemical units (U), where one unit is the amount of enzyme necessary Company. Bacto Yeast Nitrogen Base was obtained from to catalyse the oxidation or reduction of one micromole Difco. Other chemicals used were of reagent grade. of coenzyme (NAD/NADP) per minute at 30°C under the given experimental conditions. Specific activities are Microorganisms expressed as units mg protein-1. The reaction mixtures and Pachysolen tannophilus Boidin et Adzet NRRL Y-2460 other conditions for the individual enzymes are as follows. (ATCC 32691) was obtained from the yeast collection at the USDA Northern Regional Research Center, Peoria, IL, D-Xylose reductase (EC 1.1.1.21) (alditol:NADP+/ and maintained on yeast malt agar (YMA, Difco). Muta- NAD+ 1-axidoreductase). The activity of D-xylose reductase genesis, enrichment, isolation and selection of mutant was determined using NADPH and NADH as coenzyme 7 strains of P. tannophilus Y-2460, viz. NO3→NO3-7,NO3→ according to the method described by Chiang and Knight. U-4, NO3→NO3-4, U→U-27 and U→NO3-6, have been The reaction mixture contained 0.1 M Tris-HCl buffer, 6 -3 described previously.
Recommended publications
  • Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism
    biology Article Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism Ibrahim H. Polat 1,2,3 ,Míriam Tarrado-Castellarnau 1,4 , Rohit Bharat 1, Jordi Perarnau 1 , Adrian Benito 1,5 , Roldán Cortés 1, Philippe Sabatier 2 and Marta Cascante 1,4,* 1 Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; [email protected] (I.H.P.); [email protected] (M.T.-C.); [email protected] (R.B.); [email protected] (J.P.); [email protected] (A.B.); [email protected] (R.C.) 2 Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France; [email protected] 3 Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, 60590 Frankfurt, Germany 4 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain 5 Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK * Correspondence: [email protected] Simple Summary: Cancer cells alter their metabolism to maintain their high need for energy, produce Citation: Polat, I.H.; enough macromolecules for biosynthesis, and preserve their redox status. The investigation of Tarrado-Castellarnau, M.; Bharat, R.; cancer cell-specific metabolic alterations has vital importance to identify targets to be exploited for Perarnau, J.; Benito, A.; Cortés, R.; therapeutic development. The pentose phosphate pathway (PPP) is often highly activated in tumor Sabatier, P.; Cascante, M.
    [Show full text]
  • Proteome Analysis of Xylose Metabolism in Rhodotorula Toruloides During Lipid Production Ievgeniia A
    Tiukova et al. Biotechnol Biofuels (2019) 12:137 https://doi.org/10.1186/s13068-019-1478-8 Biotechnology for Biofuels RESEARCH Open Access Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production Ievgeniia A. Tiukova1,2* , Jule Brandenburg2, Johanna Blomqvist2,3, Sabine Sampels2, Nils Mikkelsen2, Morten Skaugen4, Magnus Ø. Arntzen4, Jens Nielsen1, Mats Sandgren2 and Eduard J. Kerkhoven1 Abstract Background: Rhodotorula toruloides is a promising platform organism for production of lipids from lignocellulosic substrates. Little is known about the metabolic aspects of lipid production from the lignocellolosic sugar xylose by oleaginous yeasts in general and R. toruloides in particular. This study presents the frst proteome analysis of the metabolism of R. toruloides during conversion of xylose to lipids. Results: Rhodotorula toruloides cultivated on either glucose or xylose was subjected to comparative analysis of its growth dynamics, lipid composition, fatty acid profles and proteome. The maximum growth and sugar uptake rate of glucose-grown R. toruloides cells were almost twice that of xylose-grown cells. Cultivation on xylose medium resulted in a lower fnal biomass yield although fnal cellular lipid content was similar between glucose- and xylose-grown cells. Analysis of lipid classes revealed the presence of monoacylglycerol in the early exponential growth phase as well as a high proportion of free fatty acids. Carbon source-specifc changes in lipid profles were only observed at early exponential growth phase, where C18 fatty acids were more saturated in xylose-grown cells. Proteins involved in sugar transport, initial steps of xylose assimilation and NADPH regeneration were among the proteins whose levels increased the most in xylose-grown cells across all time points.
    [Show full text]
  • Xylose Fermentation to Ethanol by Schizosaccharomyces Pombe Clones with Xylose Isomerase Gene." Biotechnology Letters (8:4); Pp
    NREL!TP-421-4944 • UC Category: 246 • DE93000067 l I Xylose Fermenta to Ethanol: A R ew '.) i I, -- , ) )I' J. D. McMillan I ' J.( .!i �/ .6' ....� .T u�.•ls:l ., �-- • National Renewable Energy Laboratory II 'J 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under task no. BF223732 January 1993 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­ pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con­ stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA22161 Price: Microfiche A01 Printed Copy A03 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern­ ment Reports Announcements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address.
    [Show full text]
  • Lecture 7 - the Calvin Cycle and the Pentose Phosphate Pathway
    Lecture 7 - The Calvin Cycle and the Pentose Phosphate Pathway Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire 1 Introduction The Calvin cycle Text The dark reactions of photosynthesis in green plants Reduces carbon from CO2 to hexose (C6H12O6) Requires ATP for free energy and NADPH as a reducing agent. 2 2 Introduction NADH versus Text NADPH 3 3 Introduction The Pentose Phosphate Pathway Used in all organisms Glucose is oxidized and decarboxylated to produce reduced NADPH Used for the synthesis and degradation of pentoses Shares reactions with the Calvin cycle 4 4 1. The Calvin Cycle Source of carbon is CO2 Text Takes place in the stroma of the chloroplasts Comprises three stages Fixation of CO2 by ribulose 1,5-bisphosphate to form two 3-phosphoglycerate molecules Reduction of 3-phosphoglycerate to produce hexose sugars Regeneration of ribulose 1,5-bisphosphate 5 5 1. Calvin Cycle Three stages 6 6 1.1 Stage I: Fixation Incorporation of CO2 into 3-phosphoglycerate 7 7 1.1 Stage I: Fixation Rubisco: Ribulose 1,5- bisphosphate carboxylase/ oxygenase 8 8 1.1 Stage I: Fixation Active site contains a divalent metal ion 9 9 1.2 Rubisco Oxygenase Activity Rubisco also catalyzes a wasteful oxygenase reaction: 10 10 1.3 State II: Formation of Hexoses Reactions similar to those of gluconeogenesis But they take place in the chloroplasts And use NADPH instead of NADH 11 11 1.3 State III: Regeneration of Ribulose 1,5-Bisphosphosphate Involves a sequence of transketolase and aldolase reactions. 12 12 1.3 State III:
    [Show full text]
  • RESPIRATION Pentose Phosphate Pathway Or Hexose Monophosphate Pathway
    RESPIRATION Pentose Phosphate Pathway or Hexose Monophosphate Pathway Pentose phosphate pathway or hexose monophosphate pathway (HMP pathway) is the other common pathway to break down glucose to pyruvate and operates in both aerobic and anaerobic conditions. This pathway produces NADPH, which carries chemical energy in the form of reducing power and is used almost universally as the reductant in anabolic (energy utilization) pathways (e.g., fatty acid biosynthesis, cholesterol biosynthesis, nucleotide biosynthesis) and detoxification pathways (e.g., reduction of oxidized glutathione, cytochrome P450 monooxygenases). Also, the pentose phosphate pathway generates pentose sugar ribose and its derivatives, which are necessary for the biosynthesis of nucleic acids (DNA and RNA) as well as ATP, NADH, FAD, and coenzyme A. In this way, though the pentose phosphate pathway may be a source of energy in many microorganisms, it is more often of greater importance in various biosynthetic pathways. Pentose phosphate pathway consists of two phases: the oxidative phase and the non-oxidative phase. Oxidative Phase: The oxidative phase of the pentose phosphate pathway initiates with the conversion of glucose 6- phosphate to 6-Phosphogluconate. NADP+ is the electron acceptor yielding NADPH during this reaction. 6-Phosphogluconate, a six-carbon sugar, is then oxidativelydecarboxylated to yield ribulose 5-phosphate, a five-carbon sugar. NADP+ is again the electron acceptor yielding NADPH. In the final step of oxidative phase, there is isomerisation of ribulose 5-phosphatc to ribose 5- phosphate by phosphopentose isomerase and the conversion of ribulose 5-phosphate into its epimerxylulose 5-phosphate by phosphopentose epimerase for the transketolase reaction in non- oxidative phase.
    [Show full text]
  • Transaldolase B of Escherichia Coli K-12: Cloning of Its Gene, Talb, and Characterization of the Enzyme from Recombinant Strains
    JOURNAL OF BACTERIOLOGY, Oct. 1995, p. 5930–5936 Vol. 177, No. 20 0021-9193/95/$04.0010 Copyright q 1995, American Society for Microbiology Transaldolase B of Escherichia coli K-12: Cloning of Its Gene, talB, and Characterization of the Enzyme from Recombinant Strains GEORG A. SPRENGER,* ULRICH SCHO¨ RKEN, GERDA SPRENGER, AND HERMANN SAHM Institut fu¨r Biotechnologie 1, Forschungszentrum Ju¨lich GmbH, D-52425 Ju¨lich, Germany Received 7 June 1995/Accepted 7 August 1995 A previously recognized open reading frame (T. Yura, H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono, K. Mizobuchi, and A. Nakata, Nucleic Acids Res. 20:3305–3308) from the 0.2-min region of the Escherichia coli K-12 chromosome is shown to encode a functional transaldolase activity. After cloning of the gene onto high-copy-number vectors, transaldolase B (D-sedoheptulose-7-phosphate:D-glyceraldehyde-3-phos- phate dihydroxyacetone transferase; EC 2.2.1.2) was overexpressed up to 12.7 U mg of protein21 compared with less than 0.1 U mg of protein21 in wild-type homogenates. The enzyme was purified from recombinant E. coli K-12 cells by successive ammonium sulfate precipitations (45 to 80% and subsequently 55 to 70%) and two anion-exchange chromatography steps (Q-Sepharose FF, Fractogel EMD-DEAE tentacle column; yield, 130 mg of protein from 12 g of cell wet weight) and afforded an apparently homogeneous protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit size of 35,000 6 1,000 Da. As the enzyme had a molecular mass of 70,000 Da by gel filtration, transaldolase B is likely to form a homodimer.
    [Show full text]
  • PENTOSE PHOSPHATE PATHWAY — Restricted for Students Enrolled in MCB102, UC Berkeley, Spring 2008 ONLY
    Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 5 Reading: Ch. 14 of Principles of Biochemistry, “Glycolysis, Gluconeogenesis, & Pentose Phosphate Pathway.” PENTOSE PHOSPHATE PATHWAY This pathway produces ribose from glucose, and it also generates 2 NADPH. Two Phases: [1] Oxidative Phase & [2] Non-oxidative Phase + + Glucose 6-Phosphate + 2 NADP + H2O Ribose 5-Phosphate + 2 NADPH + CO2 + 2H ● What are pentoses? Why do we need them? ◦ DNA & RNA ◦ Cofactors in enzymes ● Where do we get them? Diet and from glucose (and other sugars) via the Pentose Phosphate Pathway. ● Is the Pentose Phosphate Pathway just about making ribose sugars from glucose? (1) Important for biosynthetic pathways using NADPH, and (2) a high cytosolic reducing potential from NADPH is sometimes required to advert oxidative damage by radicals, e.g., ● - ● O2 and H—O Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Two Phases of the Pentose Pathway Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY NADPH vs. NADH Metabolism Lecture 5 — PENTOSE PHOSPHATE PATHWAY — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Oxidative Phase: Glucose-6-P Ribose-5-P Glucose 6-phosphate dehydrogenase. First enzymatic step in oxidative phase, converting NADP+ to NADPH. Glucose 6-phosphate + NADP+ 6-Phosphoglucono-δ-lactone + NADPH + H+ Mechanism. Oxidation reaction of C1 position. Hydride transfer to the NADP+, forming a lactone, which is an intra-molecular ester.
    [Show full text]
  • Synthesis and Cell Survival Under Stress Conditions . the PPP
    Pentose phosphate pathway Significance of Pentose Phosphate Pathway To generate reducing equivalents, in the form of NADPH, which is needed for fatty acid synthesis and cell survival under stress conditions . To provide the cell with ribose-5-phosphate (R5P) for the synthesis of the nucleotides and nucleic acids. No ATP is generated in this pathway. So glucose can be metabolized through this pathway even when energy requirement is low. Location of the pathway • The enzymes are located in the cytosol. The tissues such as liver, adipose tissue, adrenal gland, erythrocytes, testes & lactating mammary gland, are highly active in the oxidative phase of HMP shunt. Rapidly dividing cells have a high activity of the non-oxidative phase. *It is called the pentose phosphate shunt because the pathway allows for carbon atoms from glucose 6-phosphate to take a shunt before they proceed down the glycolytic pathway. The PPP comprises two irreversible oxidative reactions followed by a series of reversible interconversions. The PPP is thus divided into two biochemical branches: An oxidative and a non-oxidative branch. The oxidative branch converts glucose 6-phosphate (G6P) into ribulose-5-phosphate (Ru5P), CO2 and NADPH. NADPH is vital to maintain the reduction-oxidation (redox) balance under stress conditions and allows cells to proliferate rapidly. The non-oxidative branch yields the glycolytic intermediates fructose 6-phosphate (F6P), glyceraldehyde 3-phosphate (G3P) and sedoheptulose sugars, resulting in the production of sugar phosphate precursors for amino acid synthesis and ribose-5-phosphate (R5P), which is essential for nucleic acid synthesis. Oxidative Phase of the Pentose Phosphate Pathway Glucose 6-phosphate is oxidized to 6-phosphoglucono-δ-lactone to generate one molecule of NADPH.
    [Show full text]
  • Production of Fuels and Chemicals from Xylose by Engineered Saccharomyces Cerevisiae: a Review and Perspective Suryang Kwak and Yong‑Su Jin*
    Kwak and Jin Microb Cell Fact (2017) 16:82 DOI 10.1186/s12934-017-0694-9 Microbial Cell Factories REVIEW Open Access Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective Suryang Kwak and Yong‑Su Jin* Abstract Efcient xylose utilization is one of the most important pre-requisites for developing an economic microbial conver‑ sion process of terrestrial lignocellulosic biomass into biofuels and biochemicals. A robust ethanol producing yeast Saccharomyces cerevisiae has been engineered with heterologous xylose assimilation pathways. A two-step oxi‑ doreductase pathway consisting of NAD(P)H-linked xylose reductase and NAD­ +-linked xylitol dehydrogenase, and one-step isomerase pathway using xylose isomerase have been employed to enable xylose assimilation in engi‑ neered S. cerevisiae. However, the resulting engineered yeast exhibited inefcient and slow xylose fermentation. In order to improve the yield and productivity of xylose fermentation, expression levels of xylose assimilation pathway enzymes and their kinetic properties have been optimized, and additional optimizations of endogenous or heter‑ ologous metabolisms have been achieved. These eforts have led to the development of engineered yeast strains ready for the commercialization of cellulosic bioethanol. Interestingly, xylose metabolism by engineered yeast was preferably respiratory rather than fermentative as in glucose metabolism, suggesting that xylose can serve as a desir‑ able carbon source capable of bypassing metabolic barriers exerted by glucose repression. Accordingly, engineered yeasts showed superior production of valuable metabolites derived from cytosolic acetyl-CoA and pyruvate, such as 1-hexadecanol and lactic acid, when the xylose assimilation pathway and target synthetic pathways were optimized in an adequate manner.
    [Show full text]
  • Pentose Phosphate Pathway Biochemistry, Metabolism and Inherited Defects
    Pentose phosphate pathway biochemistry, metabolism and inherited defects Amsterdam 2008 Mirjam M.C. Wamelink The research described in this thesis was carried out at the Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands. The publication of this thesis was financially supported by: Department of Clinical Chemistry, VU University Medical Center Amsterdam E.C. Noyons Stichting ter bevordering van de Klinische Chemie in Nederland J.E. Jurriaanse Stichting te Rotterdam Printed by: Printpartners Ipskamp BV, Enschede ISBN: 978-90-9023415-1 Cover: Representation of a pathway of sugar Copyright Mirjam Wamelink, Amsterdam, The Netherlands, 2008 2 VRIJE UNIVERSITEIT Pentose phosphate pathway biochemistry, metabolism and inherited defects ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Geneeskunde op donderdag 11 december 2008 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105 door Mirjam Maria Catharina Wamelink geboren te Alkmaar 3 promotor: prof.dr.ir. C.A.J.M. Jakobs copromotor: dr. E.A. Struijs 4 Abbreviations 6PGD 6-phosphogluconate dehydrogenase ADP adenosine diphosphate ATP adenosine triphosphate CSF cerebrospinal fluid DHAP dihydroxyacetone phosphate G6PD glucose-6-phosphate dehydrogenase GA glyceraldehyde GAPDH glyceraldehyde-3-phosphate dehydrogenase GSG oxidized glutathione
    [Show full text]
  • Metabolic Changes Induced by Deletion of Transcriptional Regulator GCR2 in Xylose- Fermenting Saccharomyces Cerevisiae
    microorganisms Article Metabolic Changes Induced by Deletion of Transcriptional Regulator GCR2 in Xylose- Fermenting Saccharomyces cerevisiae Minhye Shin 1 and Soo Rin Kim 2,* 1 Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; [email protected] 2 School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea * Correspondence: [email protected]; Tel.: +82-53-950-7769 Received: 27 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Glucose repression has been extensively studied in Saccharomyces cerevisiae, including the regulatory systems responsible for efficient catabolism of glucose, the preferred carbon source. However, how these regulatory systems would alter central metabolism if new foreign pathways are introduced is unknown, and the regulatory networks between glycolysis and the pentose phosphate pathway, the two major pathways in central carbon metabolism, have not been systematically investigated. Here we disrupted gcr2, a key transcriptional regulator, in S. cerevisiae strain SR7 engineered to heterologously express the xylose-assimilating pathway, activating genes involved in glycolysis, and evaluated the global metabolic changes. gcr2 deletion reduced cellular growth in glucose but significantly increased growth when xylose was the sole carbon source. Global metabolite profiling revealed differential regulation of yeast metabolism in SR7-gcr2∆, especially carbohydrate and nucleotide metabolism, depending on the carbon source. In glucose, the SR7-gcr2∆ mutant showed overall decreased abundance of metabolites, such as pyruvate and sedoheptulose-7-phosphate, associated with central carbon metabolism including glycolysis and the pentose phosphate pathway. However, SR7-gcr2∆ showed an increase in metabolites abundance (ribulose-5-phosphate, sedoheptulose-7-phosphate, and erythrose-4-phosphate) notably from the pentose phosphate pathway, as well as alteration in global metabolism when compared to SR7.
    [Show full text]
  • Metabolic Engineering for Improved Microbial Pentose Fermentation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM AUTOPHAGIC PUNCTUM ARTICLE ADDENDUM Bioengineered Bugs 1:6, 1-6; November/December 2010; © 2010 Landes Bioscience Metabolic engineering for improved microbial pentose fermentation Sara Fernandes1 and Patrick Murray2,* 1IBB-Institute for Biotechnology and Bioengineering; Centre of Biological Engineering; Universidade do Minho; Braga Portugal; 2Shannon Applied Biotechnology Centre; Limerick Institute Technology; Limerick Ireland lobal concern over the depletion of yeast species such as Pachysolen sp. and Gfossil fuel reserves, and the detri- Pichia sp., S. cerevisiae does not metabo- mental impact that combustion of these lise the pentose sugars, xylose and arabi- materials has on the environment, is nose, and it was not until the late 1970s focusing attention on initiatives to cre- that the first steps were taken to develop ate sustainable approaches for the pro- methods to engineer pentose metabolism duction and use of biofuels from various in this yeast. The ability of S. cerevisiae in biomass substrates. The development of fermenting lignocellulose hydrolysates has a low-cost, safe and eco-friendly process been demonstrated repeatedly.1 S. cerevi- for the utilisation of renewable resources siae produces ethanol with stoichiometric to generate value-added products with yields from hexose sugars and tolerates a biotechnological potential as well as wide spectrum of inhibitors and elevated robust microorganisms capable of effi- osmotic pressure. For these reasons, it has cient fermentation of all types of sugars been recognised that genetic engineering are essential to underpin the economic of naturally fermenting microorganisms production of biofuels from biomass such as S.
    [Show full text]