The Differentiable Curry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reversible Programming with Negative and Fractional Types
9 A Computational Interpretation of Compact Closed Categories: Reversible Programming with Negative and Fractional Types CHAO-HONG CHEN, Indiana University, USA AMR SABRY, Indiana University, USA Compact closed categories include objects representing higher-order functions and are well-established as models of linear logic, concurrency, and quantum computing. We show that it is possible to construct such compact closed categories for conventional sum and product types by defining a dual to sum types, a negative type, and a dual to product types, a fractional type. Inspired by the categorical semantics, we define a sound operational semantics for negative and fractional types in which a negative type represents a computational effect that “reverses execution flow” and a fractional type represents a computational effect that“garbage collects” particular values or throws exceptions. Specifically, we extend a first-order reversible language of type isomorphisms with negative and fractional types, specify an operational semantics for each extension, and prove that each extension forms a compact closed category. We furthermore show that both operational semantics can be merged using the standard combination of backtracking and exceptions resulting in a smooth interoperability of negative and fractional types. We illustrate the expressiveness of this combination by writing a reversible SAT solver that uses back- tracking search along freshly allocated and de-allocated locations. The operational semantics, most of its meta-theoretic properties, and all examples are formalized in a supplementary Agda package. CCS Concepts: • Theory of computation → Type theory; Abstract machines; Operational semantics. Additional Key Words and Phrases: Abstract Machines, Duality of Computation, Higher-Order Reversible Programming, Termination Proofs, Type Isomorphisms ACM Reference Format: Chao-Hong Chen and Amr Sabry. -
Let's Get Functional
5 LET’S GET FUNCTIONAL I’ve mentioned several times that F# is a functional language, but as you’ve learned from previous chapters you can build rich applications in F# without using any functional techniques. Does that mean that F# isn’t really a functional language? No. F# is a general-purpose, multi paradigm language that allows you to program in the style most suited to your task. It is considered a functional-first lan- guage, meaning that its constructs encourage a functional style. In other words, when developing in F# you should favor functional approaches whenever possible and switch to other styles as appropriate. In this chapter, we’ll see what functional programming really is and how functions in F# differ from those in other languages. Once we’ve estab- lished that foundation, we’ll explore several data types commonly used with functional programming and take a brief side trip into lazy evaluation. The Book of F# © 2014 by Dave Fancher What Is Functional Programming? Functional programming takes a fundamentally different approach toward developing software than object-oriented programming. While object-oriented programming is primarily concerned with managing an ever-changing system state, functional programming emphasizes immutability and the application of deterministic functions. This difference drastically changes the way you build software, because in object-oriented programming you’re mostly concerned with defining classes (or structs), whereas in functional programming your focus is on defining functions with particular emphasis on their input and output. F# is an impure functional language where data is immutable by default, though you can still define mutable data or cause other side effects in your functions. -
(Pdf) of from Push/Enter to Eval/Apply by Program Transformation
From Push/Enter to Eval/Apply by Program Transformation MaciejPir´og JeremyGibbons Department of Computer Science University of Oxford [email protected] [email protected] Push/enter and eval/apply are two calling conventions used in implementations of functional lan- guages. In this paper, we explore the following observation: when considering functions with mul- tiple arguments, the stack under the push/enter and eval/apply conventions behaves similarly to two particular implementations of the list datatype: the regular cons-list and a form of lists with lazy concatenation respectively. Along the lines of Danvy et al.’s functional correspondence between def- initional interpreters and abstract machines, we use this observation to transform an abstract machine that implements push/enter into an abstract machine that implements eval/apply. We show that our method is flexible enough to transform the push/enter Spineless Tagless G-machine (which is the semantic core of the GHC Haskell compiler) into its eval/apply variant. 1 Introduction There are two standard calling conventions used to efficiently compile curried multi-argument functions in higher-order languages: push/enter (PE) and eval/apply (EA). With the PE convention, the caller pushes the arguments on the stack, and jumps to the function body. It is the responsibility of the function to find its arguments, when they are needed, on the stack. With the EA convention, the caller first evaluates the function to a normal form, from which it can read the number and kinds of arguments the function expects, and then it calls the function body with the right arguments. -
Stepping Ocaml
Stepping OCaml TsukinoFurukawa YouyouCong KenichiAsai Ochanomizu University Tokyo, Japan {furukawa.tsukino, so.yuyu, asai}@is.ocha.ac.jp Steppers, which display all the reduction steps of a given program, are a novice-friendly tool for un- derstanding program behavior. Unfortunately, steppers are not as popular as they ought to be; indeed, the tool is only available in the pedagogical languages of the DrRacket programming environment. We present a stepper for a practical fragment of OCaml. Similarly to the DrRacket stepper, we keep track of evaluation contexts in order to reconstruct the whole program at each reduction step. The difference is that we support effectful constructs, such as exception handling and printing primitives, allowing the stepper to assist a wider range of users. In this paper, we describe the implementationof the stepper, share the feedback from our students, and show an attempt at assessing the educational impact of our stepper. 1 Introduction Programmers spend a considerable amount of time and effort on debugging. In particular, novice pro- grammers may find this process extremely painful, since existing debuggers are usually not friendly enough to beginners. To use a debugger, we have to first learn what kinds of commands are available, and figure out which would be useful for the current purpose. It would be even harder to use the com- mand in a meaningful manner: for instance, to spot the source of an unexpected behavior, we must be able to find the right places to insert breakpoints, which requires some programming experience. Then, is there any debugging tool that is accessible to first-day programmers? In our view, the algebraic stepper [1] of DrRacket, a pedagogical programming environment for the Racket language, serves as such a tool. -
Notes on Functional Programming with Haskell
Notes on Functional Programming with Haskell H. Conrad Cunningham [email protected] Multiparadigm Software Architecture Group Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA Fall Semester 2014 Copyright c 1994, 1995, 1997, 2003, 2007, 2010, 2014 by H. Conrad Cunningham Permission to copy and use this document for educational or research purposes of a non-commercial nature is hereby granted provided that this copyright notice is retained on all copies. All other rights are reserved by the author. H. Conrad Cunningham, D.Sc. Professor and Chair Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA [email protected] PREFACE TO 1995 EDITION I wrote this set of lecture notes for use in the course Functional Programming (CSCI 555) that I teach in the Department of Computer and Information Science at the Uni- versity of Mississippi. The course is open to advanced undergraduates and beginning graduate students. The first version of these notes were written as a part of my preparation for the fall semester 1993 offering of the course. This version reflects some restructuring and revision done for the fall 1994 offering of the course|or after completion of the class. For these classes, I used the following resources: Textbook { Richard Bird and Philip Wadler. Introduction to Functional Program- ming, Prentice Hall International, 1988 [2]. These notes more or less cover the material from chapters 1 through 6 plus selected material from chapters 7 through 9. Software { Gofer interpreter version 2.30 (2.28 in 1993) written by Mark P. -
Design Patterns in Ocaml
Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project. -
A Practical Introduction to Python Programming
A Practical Introduction to Python Programming Brian Heinold Department of Mathematics and Computer Science Mount St. Mary’s University ii ©2012 Brian Heinold Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported Li- cense Contents I Basics1 1 Getting Started 3 1.1 Installing Python..............................................3 1.2 IDLE......................................................3 1.3 A first program...............................................4 1.4 Typing things in...............................................5 1.5 Getting input.................................................6 1.6 Printing....................................................6 1.7 Variables...................................................7 1.8 Exercises...................................................9 2 For loops 11 2.1 Examples................................................... 11 2.2 The loop variable.............................................. 13 2.3 The range function............................................ 13 2.4 A Trickier Example............................................. 14 2.5 Exercises................................................... 15 3 Numbers 19 3.1 Integers and Decimal Numbers.................................... 19 3.2 Math Operators............................................... 19 3.3 Order of operations............................................ 21 3.4 Random numbers............................................. 21 3.5 Math functions............................................... 21 3.6 Getting -
Scala by Example (2009)
Scala By Example DRAFT January 13, 2009 Martin Odersky PROGRAMMING METHODS LABORATORY EPFL SWITZERLAND Contents 1 Introduction1 2 A First Example3 3 Programming with Actors and Messages7 4 Expressions and Simple Functions 11 4.1 Expressions And Simple Functions...................... 11 4.2 Parameters.................................... 12 4.3 Conditional Expressions............................ 15 4.4 Example: Square Roots by Newton’s Method................ 15 4.5 Nested Functions................................ 16 4.6 Tail Recursion.................................. 18 5 First-Class Functions 21 5.1 Anonymous Functions............................. 22 5.2 Currying..................................... 23 5.3 Example: Finding Fixed Points of Functions................ 25 5.4 Summary..................................... 28 5.5 Language Elements Seen So Far....................... 28 6 Classes and Objects 31 7 Case Classes and Pattern Matching 43 7.1 Case Classes and Case Objects........................ 46 7.2 Pattern Matching................................ 47 8 Generic Types and Methods 51 8.1 Type Parameter Bounds............................ 53 8.2 Variance Annotations.............................. 56 iv CONTENTS 8.3 Lower Bounds.................................. 58 8.4 Least Types.................................... 58 8.5 Tuples....................................... 60 8.6 Functions.................................... 61 9 Lists 63 9.1 Using Lists.................................... 63 9.2 Definition of class List I: First Order Methods.............. -
Making a Faster Curry with Extensional Types
Making a Faster Curry with Extensional Types Paul Downen Simon Peyton Jones Zachary Sullivan Microsoft Research Zena M. Ariola Cambridge, UK University of Oregon [email protected] Eugene, Oregon, USA [email protected] [email protected] [email protected] Abstract 1 Introduction Curried functions apparently take one argument at a time, Consider these two function definitions: which is slow. So optimizing compilers for higher-order lan- guages invariably have some mechanism for working around f1 = λx: let z = h x x in λy:e y z currying by passing several arguments at once, as many as f = λx:λy: let z = h x x in e y z the function can handle, which is known as its arity. But 2 such mechanisms are often ad-hoc, and do not work at all in higher-order functions. We show how extensional, call- It is highly desirable for an optimizing compiler to η ex- by-name functions have the correct behavior for directly pand f1 into f2. The function f1 takes only a single argu- expressing the arity of curried functions. And these exten- ment before returning a heap-allocated function closure; sional functions can stand side-by-side with functions native then that closure must subsequently be called by passing the to practical programming languages, which do not use call- second argument. In contrast, f2 can take both arguments by-name evaluation. Integrating call-by-name with other at once, without constructing an intermediate closure, and evaluation strategies in the same intermediate language ex- this can make a huge difference to run-time performance in presses the arity of a function in its type and gives a princi- practice [Marlow and Peyton Jones 2004]. -
61A Lecture 6 Lambda Expressions VS Currying
Announcements • Homework 2 due Tuesday 9/17 @ 11:59pm • Project 2 due Thursday 9/19 @ 11:59pm • Optional Guerrilla section next Monday for students to master higher-order functions . Organized by Andrew Huang and the readers 61A Lecture 6 . Work in a group on a problem until everyone in the group understands the solution • Midterm 1 on Monday 9/23 from 7pm to 9pm Friday, September 13 . Details and review materials will be posted early next week . There will be a web form for students who cannot attend due to a conflict 2 Lambda Expressions >>> ten = 10 An expression: this one evaluates to a number >>> square = x * x Also an expression: evaluates to a function Lambda Expressions >>> square = lambda x: x * x Important: No "return" keyword! A function with formal parameter x that returns the value of "x * x" >>> square(4) 16 Must be a single expression Lambda expressions are not common in Python, but important in general (Demo) Lambda expressions in Python cannot contain statements at all! 4 Lambda Expressions Versus Def Statements def square(x): square = lambda x: x * x VS return x * x • Both create a function with the same domain, range, and behavior. • Both functions have as their parent the environment in which they were defined. Currying • Both bind that function to the name square. • Only the def statement gives the function an intrinsic name. The Greek letter lambda Example: http://goo.gl/XH54uE 5 Function Currying def make_adder(n): return lambda k: n + k >>> make_adder(2)(3) There's a general 5 relationship between (Demo) >>> add(2, 3) these functions 5 Newton's Method Currying: Transforming a multi-argument function into a single-argument, higher-order function. -
Advanced Tcl E D
PART II I I . A d v a n c Advanced Tcl e d T c l Part II describes advanced programming techniques that support sophisticated applications. The Tcl interfaces remain simple, so you can quickly construct pow- erful applications. Chapter 10 describes eval, which lets you create Tcl programs on the fly. There are tricks with using eval correctly, and a few rules of thumb to make your life easier. Chapter 11 describes regular expressions. This is the most powerful string processing facility in Tcl. This chapter includes a cookbook of useful regular expressions. Chapter 12 describes the library and package facility used to organize your code into reusable modules. Chapter 13 describes introspection and debugging. Introspection provides information about the state of the Tcl interpreter. Chapter 14 describes namespaces that partition the global scope for vari- ables and procedures. Namespaces help you structure large Tcl applications. Chapter 15 describes the features that support Internationalization, includ- ing Unicode, other character set encodings, and message catalogs. Chapter 16 describes event-driven I/O programming. This lets you run pro- cess pipelines in the background. It is also very useful with network socket pro- gramming, which is the topic of Chapter 17. Chapter 18 describes TclHttpd, a Web server built entirely in Tcl. You can build applications on top of TclHttpd, or integrate the server into existing appli- cations to give them a web interface. TclHttpd also supports regular Web sites. Chapter 19 describes Safe-Tcl and using multiple Tcl interpreters. You can create multiple Tcl interpreters for your application. If an interpreter is safe, then you can grant it restricted functionality. -
CSE 341 : Programming Languages
CSE 341 : Programming Languages Lecture 10 Closure Idioms Zach Tatlock Spring 2014 More idioms • We know the rule for lexical scope and function closures – Now what is it good for A partial but wide-ranging list: • Pass functions with private data to iterators: Done • Combine functions (e.g., composition) • Currying (multi-arg functions and partial application) • Callbacks (e.g., in reactive programming) • Implementing an ADT with a record of functions (optional) 2 Combine functions Canonical example is function composition: fun compose (f,g) = fn x => f (g x) • Creates a closure that “remembers” what f and g are bound to • Type ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) but the REPL prints something equivalent • ML standard library provides this as infix operator o • Example (third version best): fun sqrt_of_abs i = Math.sqrt(Real.fromInt(abs i)) fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i val sqrt_of_abs = Math.sqrt o Real.fromInt o abs 3 Left-to-right or right-to-left val sqrt_of_abs = Math.sqrt o Real.fromInt o abs As in math, function composition is “right to left” – “take absolute value, convert to real, and take square root” – “square root of the conversion to real of absolute value” “Pipelines” of functions are common in functional programming and many programmers prefer left-to-right – Can define our own infix operator – This one is very popular (and predefined) in F# infix |> fun x |> f = f x fun sqrt_of_abs i = i |> abs |> Real.fromInt |> Math.sqrt 4 Another example • “Backup function” fun backup1 (f,g) = fn x => case