(Co)monads in Free Probability Theory Roland Friedrich∗ September 12, 2017 Abstract We discuss free probability theory and free harmonic analysis from a categorical perspective. In order to do so, we extend first the set of analytic convolutions and operations and then show that the comonadic structure governing free probability is isomorphic to several well-known categories of algebras, such as, e.g., Witt vectors, differential algebras, etc. Within this framework moment- cumulant formulae are shown to correspond to natural transformations and not to be exclusive to probability theories. Finally, we start to discuss free probability and in particular free harmonic analysis from the point of view of algebraic theories and operads. Contents 1 Introduction 2 2 Algebraic Aspects of Free Probability3 2.1 The category of algebraic probability spaces and freeness . .3 2.2 The affine group schemes related to free additive and multiplicative convolution . .4 2.3 The natural transformations R and S ...........................7 2.4 Free cumulants and the NS-convolution . .8 2.5 Hopf algebras related to free probability . 10 arXiv:1709.02973v1 [math.PR] 9 Sep 2017 3 Co-rings and comonads 12 3.1 Witt vectors . 12 3.2 The λ-ring of formal power series . 13 3.3 Differential algebras . 14 3.4 Endomorphism algebras . 15 3.5 Free convolution coalgebras . 16 ∗Saarland University,
[email protected]. Supported by the ERC advanced grant \Noncommutative distribu- tions in free probability". 1 4 Analytic Aspects of Infinitely Divisible Probability Measures 17 4.1 The Borel functor and free harmonic analysis . 17 4.2 Analytic Witt semi-ring .