Impacts of Human-Caused Fires on Biodiversity and Ecosystem Functioning, and Their Causes in Tropical, Temperate

Total Page:16

File Type:pdf, Size:1020Kb

Impacts of Human-Caused Fires on Biodiversity and Ecosystem Functioning, and Their Causes in Tropical, Temperate Secretariat CBD Technical Series No. of the Convention on Biological Diversity IMPACTS OF HUMAN-CAUSED FIRES ON BIODIVERSITY AND ECOSYSTEM FUNCTIONING, AND THEIR CAUSES IN TROPICAL, TEMPERATE AND BOREAL FOREST BIOMES 5 Impacts of human-caused fires on biodiversity and ecosystem functioning, and their causes in tropical, temperate and boreal forest biomes November 2001 Impacts of human-caused fires on biodiversity and ecosystem functioning Published by the Secretariat of the Convention Citation on Biological Diversity ISBN: 92-807-2112-7 Secretariat of the Convention on Biological Diversity (2001). Impacts of human-caused fires Copyright © 2001, Secretariat of the on biodiversity and ecosystem functioning, and Convention on Biological Diversity their causes in tropical, temperate and boreal forest biomes. Montreal, SCBD, 42p. (CBD The designations employed and the presentation Technical Series no. 5). of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of For further information, please contact: any country, territory, city or area or of its Secretariat of the Convention authorities, or concerning the delimitation of its on Biological Diversity frontiers or boundaries. World Trade Centre 393 St. Jacques Street, suite 300 The views reported in this publication do not Montréal, Québec, Canada H2Y 1N9 necessarily represent those of the Convention on Phone: 1 (514) 288 2220 Biological Diversity nor those of the reviewers. Fax: 1 (514) 288 6588 E-mail: [email protected] This publication may be reproduced for educa- Website: http://www.biodiv.org tional or non-profit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that uses this document as a source. i Impacts of human-caused fires on biodiversity and ecosystem functioning Foreword The Convention on Biological Diversity (CBD), The Technical Publications Series is intended to: negotiated under the auspices of the United • Foster scientific and technical cooperation; Nations Environment Programme (UNEP), was • Improve communication between the adopted in 1992 and entered into force in 1993. Convention and the scientific community; Its aims are the conservation of biological diver- • Increase awareness of current biodiversity- sity, the sustainable use of biological resources, related problems and concerns; and and the fair and equitable sharing of benefits • Facilitate widespread and effective use of arising from the use of genetic resources. One of the growing body of scientific and technical the major challenges facing the Convention on information on conserving and using bio- Biological Diversity is the communication of logical diversity. research results in a way that provides the policy makers, their advisors, the scientific community The CBD Technical Publications Series comes at and other stakeholders with helpful insights. a time when the international community through the Conference of the Parties to the Major factors leading to biodiversity loss are Convention has committed itself to achieving habitat loss and degradation, invasive alien tangible results in all aspects of the sustainable species, overuse of resources and pollution. Due management of biological diversity for social to the complexity of these factors, various and economic purposes. We therefore believe approaches and strategies are being used to that this series will be useful to the broader sci- reduce biodiversity loss. All, however, require the entific community and those concerned with best available scientific information that allows biodiversity management. the development and implementation of sound management strategies. I am very pleased to make available to the scientif- ic community and those actively involved in biodi- The goal of the CBD Technical Publications versity management the fifth publication in the Series is to contribute to the dissemination of CBD Technical Series, addressing the impacts of up-to-date and accurate information on selected human-caused fires on biodiversity and ecosystem topics that are important for the conservation of functioning, and their causes in tropical, temperate biological diversity, the sustainable use of its and boreal forest biomes. It is my hope that this components and the equitable sharing of its ben- publication will broaden our understanding of the efits. A large and growing body of evidence has complexity of the issue and at the same time facil- clearly established the need to disseminate syn- itate the implementation of remedial measures to thesis publications relevant to CBD objectives reduce or halt biodiversity loss. and selected reports presented at CBD meetings. I wish to express my sincere gratitude to all those who have contributed in one-way or another in the preparation and production of this series. Hamdallah Zedan Executive Secretary ii Impacts of human-caused fires on biodiversity and ecosystem functioning Acknowledgements The paper was commissioned by the Secretariat of the Convention on Biological and prepared by the Center for International Forestry Research (CIFOR). It was then peer reviewed externally. It was also posted on the website of the Convention for comments by the scientific community at large. The Secretariat of the Convention on Biological Diversity wishes to acknowledge the consultants who prepared the final draft of the document: Rona Dennis (CIFOR), Erik Meijaard (Australian National University), Grahame Applegate (CIFOR), Robert Nasi (CIFOR) and Peter Moore (WWF-IUCN). The Secretariat expresses its gratitude to the following individu- als and organizations for their review and com- ments: Amha bin Buang (ITTO), Johann G. Goldammer (Global Fire Monitoring Center), John Herity and the Canadian Forestry Service, Gareth Rees and his Australian colleagues. Hamdallah Zedan Executive Secretary iii Impacts of human-caused fires on biodiversity and ecosystem functioning Impacts of human-caused fires on biodiversity and ecosystem functioning, and their causes in tropical, temperate and boreal forest biomes Note by the Executive Secretary Executive summary The problems and negative impacts associated with large-scale uncontrolled forest fires have increased worldwide over the past two decades. By far the worst forest fires, in terms of burnt area, in recent times occurred in 1997-98. Estimates suggested that fires adversely impacted as much as 20 million hectares of forest worldwide. Despite the devastating picture evoked by media reports and the Internet in recent years, it is important to remember that fire is a vital and natural part of some forest ecosystems, and that humans have used fire for thousands of years as a land management tool. Similarly, the El Niño climate event that is often blamed for creating the drought conditions necessary for such large-scale fires is not a new phenomenon. However, in the latter part of the 20th century, changes in the man-fire dynamic and an increase in El Niño frequency, have led to a situation where fires are now a major threat to many forests and their biodiversity therein. Tropical rain forests, in particular, which were once thought to be resistant to fires, are now experienc- ing large-scale fires due to unsustainable management practices. Temperate forests in the United States in which fire was deliberately suppressed for management and political reasons are now experiencing devastating wildfires due to an unnatural accumulation of fuel. Due to political and economic crises, boreal forests of Russia are experiencing some of the worst fires in decades. Despite the sharp media focus, the position on international agendas and the many donor funded devel- opment and research projects, forest fires continue to be a problem in many countries. In addition, sur- prisingly little attention has been paid to the impact of fires on forest ecosystems and biodiversity. Out of the 36 fire projects carried out or ongoing in Indonesia, a country of great biological diversity, between 1983 and 1998, only one addressed biodiversity. However, the research community has faired slightly bet- ter, although few long-term studies exist outside North America. The Convention on Biological Diversity (CBD) provides an adequate framework to address the negative impacts of human-induced fires on tropical, temperate, and boreal forest biological diversity: • To achieve a reliable and operational system for national, regional and global forest fire monitoring and reporting to facilitate amelioration strategies (CBD Articles 5, 7, 17 and 18); • To protect ecosystems vulnerable to forest fires and that are critically important for conservation at the national and global level, such as biodiversity hot spots and protected areas (CBD Article 8); • To promote ecologically sustainable forest management, including environmentally sound expan- sion of plantations, elimination of illegal logging, and improvement of timber harvesting practices that reduce organic debris, and thus minimise unwanted fires (CBD Articles 11 and 12); • To rehabilitate and restore degraded or burned forest lands (CBD Articles 8 and 10); • To identify the processes and impacts of fires in vulnerable and globally significant ecosystems including tropical and boreal peat-land systems, and tropical woodlands (CBD Article 7); • To train, educate and enhance public
Recommended publications
  • Fifth World Forestry Congress
    Proceedings of the Fifth World Forestry Congress VOLUME 1 RE University of Washington, Seattle, Washington United States of America August 29September 10, 1960 The President of the United States of America DWIGHT D. EISENHOWER Patron Fifth World Forestry Congress III Contents VOLUME 1 Page Chapter1.Summary and Recommendations of the Congress 1 Chapter 2.Planning for the Congress 8 Chapter3.Local Arrangements for the Congress 11 Chapter 4.The Congress and its Program 15 Chapter 5.Opening Ceremonies 19 Chapter6. Plenary Sessions 27 Chapter 7.Special Congress Events 35 Chapitre 1.Sommaire et recommandations du Congrès 40 Chapitre 2.Preparation des plans en vue du Congrès 48 Chapitre 3.Arrangements locaux en vue du Congrès 50 Chapitre 4.Le Congrès et son programme 51 Chapitre 5.Cérémonies d'ouverture 52 Chapitre 6.Seances plénières 59 Chapitre 7.Activités spéciales du Congrès 67 CapItullo1. Sumario y Recomendaciones del Congreso 70 CapItulo 2.Planes para el Congreso 78 CapItulo 3.Actividades Locales del Congreso 80 CapItulo 4.El Congreso y su Programa 81 CapItulo 5.Ceremonia de Apertura 81 CapItulo 6.Sesiones Plenarias 88 CapItulo 7.Actos Especiales del Congreso 96 Chapter8. Congress Tours 99 Chapter9.Appendices 118 Appendix A.Committee Memberships 118 Appendix B.Rules of Procedure 124 Appendix C.Congress Secretariat 127 Appendix D.Machinery Exhibitors Directory 128 Appendix E.List of Financial Contributors 130 Appendix F.List of Participants 131 First General Session 141 Multiple Use of Forest Lands Utilisation multiple des superficies boisées Aprovechamiento Multiple de Terrenos Forestales Second General Session 171 Multiple Use of Forest Lands Utilisation multiple des superficies boisées Aprovechamiento Multiple de Terrenos Forestales Iv Contents Page Third General Session 189 Progress in World Forestry Progrés accomplis dans le monde en sylviculture Adelantos en la Silvicultura Mundial Section I.Silviculture and Management 241 Sessions A and B.
    [Show full text]
  • Old-Growth Forests
    Pacific Northwest Research Station NEW FINDINGS ABOUT OLD-GROWTH FORESTS I N S U M M A R Y ot all forests with old trees are scientifically defined for many centuries. Today’s old-growth forests developed as old growth. Among those that are, the variations along multiple pathways with many low-severity and some Nare so striking that multiple definitions of old-growth high-severity disturbances along the way. And, scientists forests are needed, even when the discussion is restricted to are learning, the journey matters—old-growth ecosystems Pacific coast old-growth forests from southwestern Oregon contribute to ecological diversity through every stage of to southwestern British Columbia. forest development. Heterogeneity in the pathways to old- growth forests accounts for many of the differences among Scientists understand the basic structural features of old- old-growth forests. growth forests and have learned much about habitat use of forests by spotted owls and other species. Less known, Complexity does not mean chaos or a lack of pattern. Sci- however, are the character and development of the live and entists from the Pacific Northwest (PNW) Research Station, dead trees and other plants. We are learning much about along with scientists and students from universities, see the structural complexity of these forests and how it leads to some common elements and themes in the many pathways. ecological complexity—which makes possible their famous The new findings suggest we may need to change our strat- biodiversity. For example, we are gaining new insights into egies for conserving and restoring old-growth ecosystems. canopy complexity in old-growth forests.
    [Show full text]
  • Managing for Late-Successional/Old-Growth Characteristics in Northern Hardwood-Conifer Forests William S
    Forest Ecology and Management 235 (2006) 129–142 www.elsevier.com/locate/foreco Managing for late-successional/old-growth characteristics in northern hardwood-conifer forests William S. Keeton * Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, United States Received 19 March 2006; received in revised form 2 August 2006; accepted 2 August 2006 Abstract In the northern hardwood region of North America managing for late-successional forest habitats and functions is an important element of ecosystem management. This study tests the hypothesis that uneven-aged practices can be modified to accelerate rates of late-successional forest development. An approach, termed ‘‘structural complexity enhancement’’ (SCE), is compared against conventional uneven-aged systems modified to increase post-harvest structural retention. Experimental treatments, including controls, were applied to 2 ha units and replicated at two multi- aged northern hardwood forests in Vermont, USA. Structural objectives include vertically differentiated canopies, elevated large snag and downed log densities, variable horizontal density (including small gaps), and re-allocation of basal area to larger diameter classes. The latter objective is achieved, in part, by cutting to a rotated sigmoid diameter distribution. This is generated from a basal area (34 m2 haÀ1) and tree size (90 cm dbh) indicative of old-growth structure. Forest structure data have been collected over 2 years pre-treatment and 3 years post-treatment. Fifty-year simulations of stand development were run in NE-TWIGS and FVS comparing treatment and no treatment scenarios. Simulations also tested the sensitivity of large tree development to prescription parameters. Leaf area index retention was spatially variable but significantly (P < 0.001) greater under SCE (91%) compared to conventional treatments (75%).
    [Show full text]
  • Forest Ecology and Management 267 (2012) 271-283
    Forest Ecology and Management 267 (2012) 271-283 Contents lists available at SciVerse ScienceDirect Forest Ecology and Management journal hom epage: www.elsevier.com/locate/foreco Analyzing wildfire exposure and source-sink relationships on a fire prone forest landscape a, a b c Alan A. Ager *, Nicole M. Vaillant , Mark A. Finney , Haiganoush K. Preisler a USDA Forest Service, Pacific Northwest Research Station, Western Wildland Environmental Threat Assessment Center, 3160 NE 3rd Street, Prineville, OR 97754, USA b USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, 5775 Hwy. 10 West, Missoula, MT 59808, USA C USDA Forest Service, Pacific Southwest Research Station, 800 Buchannan Street, Albany, CA 9471 0, USA ARTICLE INFO ABSTR ACT Article history: We used simulation modeling to analyze wildfire exposure to social and ecological values on a 0,6 mil­ Received 9 August 2011 lion ha national forest in central Oregon, USA. We simulated 50,000 wildfires that replicated recent fire Received in revised form 13 November 2011 events in the area and generated detailed maps of burn probability (BP) and fire intensity distributions. Accepted 14 November 2011 We also recorded the ignition locations and size of each simulated fire and used these outputs to con­ Available online 8 January 2012 struct a fire source-sink ratio as the ratio of fire size to burn probability. Fire behavior was summarized for federal land management designations, including biological conservation reserves, recreational sites, Keywords: managed forest, and wildland urban interface. Burn probability from the simulations ranged from Wildfire simulation Wildfire risk 0.00091 to 0.026 within the study area (mean = 0.0023), and exhibited substantial variation among Conservation biology and within land designations.
    [Show full text]
  • Forestry Study Guide
    Forestry Study Guide Learning Objectives: Students should be able to: 1. Identify common trees without a key. 2. Identify specific or unusual species of trees or shrubs through the use of a key. 3. Understand how wildlife habitat relates to: forest communities, forest species, forest age structure, snags and den trees, availability of food and cover, and riparian zones. 4. Understand basic forest management concepts. 5. Be familiar with use of a diameter tape and other forestry tools. 6. Understand the benefits of trees in urban/suburban settings and the factors affecting their health and survival. Key Topics 1. Basic Forestry Knowledge; such as tree identification, silvics of common trees, tree measurement and tool use, and interaction of forests and environment. 2. Forest Ecology; such as the observation and identification of forest types, observing and describing forest stand structure, observing and describing site variables that affect tree species, and observing and identifying the stages of forest succession. 3. Silviculture Systems - such as describing the difference between harvesting and silvicultural systems, describe the difference between the goal of thinning and final harvest, describe the purpose of common silvicultural systems, and describe the management practices and their purpose. 4. Viewing Ecosystems; such as the observation of how trees and forests impact soil development, wildlife habitat, public places, agriculture, and on water quality. 5. Urban Forestry; such as the recognition of the value of trees in the urban landscape, choosing the correct species for specific locations, energy conservation through three plantings, urban wildlife benefits from tree plantings methods, proper tree care and maintenance, including wise choices in pest and disease control.
    [Show full text]
  • Over 200 Top US Climate and Forest Scientists Urge
    For Immediate Release Over 200 Top U.S. Climate and Forest Scientists Urge Congress: Protect Forests to Mitigate Climate Crisis 13 May 2020 Contact: William Moomaw, Ph.D. ([email protected]; 617-335-3994) Chad Hanson, Ph.D. ([email protected]; 530-273-9290) Dominick DellaSala, Ph.D. ([email protected]; 541-621-7223) As multiple current legislative proposals attempt to shoehorn measures that would increase logging, or increase funding for logging, into COVID-19 stimulus packages, over 200 top U.S. climate and forest scientists are now asking Congressional leaders to avoid using the pandemic emergency as a means for stripping away forest protections and promoting logging. In a historic and unprecedented letter sent to Congress today, the scientists conclude that, in order to avoid the worst impacts of the climate crisis, moving beyond fossil fuel consumption is not enough, and we must also increase forest protections and shift away from energy-intensive and greenhouse-gas polluting wood consumption. The scientists note that annual carbon emissions from logging in U.S. forests are comparable to emissions from the residential and commercial sectors combined. They ask legislators to reject false climate solutions that promote forest biomass logging (removal and incineration of trees for energy production) under the guise of “climate-friendly” or “carbon neutral” energy or logging for cross-laminated timber (CLT) and other wood products under the guise of carbon storage. Most of the carbon in trees is removed from forests when they are logged and quickly ends up in the atmosphere or in landfills, they caution. The scientists also note that logging, including commercial “thinning,” can often increase fire intensity in forests, while damaging soils and removing vital nutrients, which undermines the carbon sequestration and storage capacity of forests.
    [Show full text]
  • Forest Stewardship Series 3: Forest Ecology
    PUBLICATION 8233 FOREST STEWARDSHIP SERIES 3 Forest Ecology LAURIE LITMAN, InfoWright, Stockton, CA; GARY NAKAMURA, UCCE Forestry Specialist, Department of Environmental Science, Policy, and Management, University of California, Berkeley A forest is more than trees. It is also the shrubs, wildflowers, and grasses; the animals that depend on and live among these plants; the soil in which the plants grow; the UNIVERSITY OF dead trees and plants; the stream that flows through it; the insects, fungi, bacteria, CALIFORNIA and organisms you cannot readily see; and the climate. In short, a forest is an eco- Division of Agriculture system. An ecosystem is simply a specific area of the earth that includes all the liv- and Natural Resources ing organisms and nonliving components of the environment that interact within its http://anrcatalog.ucdavis.edu boundaries. An ecosystem can be any size, such as a log, pond, field, forest, or the whole earth’s biosphere. Objective It is useful to understand and manage your forest as an ecosystem Understand the structure and because all the components influence one another: for example, if you functions of forested ecosystems want certain tree species in your forest, you may have to manage the in California. competing vegetation. You cannot control certain aspects of the ecosys- tem such as climate; you must learn to live within its constraints of Competencies temperature and precipitation. In many cases the dates of last and first • Identify the forest ecosystem(s) on your frost control the growing season, the types of plants you can grow, and property. the productivity of your forest.
    [Show full text]
  • Implementing Sustainable Forest Management Using Six Concepts In
    Journal of Sustainable Forestry, 29:79–108, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 1054-9811 print/1540-756X online DOI: 10.1080/10549810903463494 WJSF1054-98111540-756XJournalImplementing of Sustainable Forestry,Forestry Vol. 29, No. 1, January-March 2009: pp. 0–0 Sustainable Forest Management Using Six Concepts in an Adaptive Management Framework ForestB. C. Foster in an etAdaptive al. Management Framework BRYAN C. FOSTER1, DEANE WANG1, WILLIAM S. KEETON1, and MARK S. ASHTON2 1Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA 2School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA Certification and principles, criteria and indicators (PCI) describe desired ends for sustainable forest management (SFM) but do not address potential means to achieve those ends. As a result, forest owners and managers participating in certification and employing PCI as tools to achieving SFM may be doing so inefficiently: achiev- ing results by trial-and-error rather than by targeted management practices; dispersing resources away from priority objectives; and passively monitoring outcomes rather than actively establishing quantitative goals. In this literature review, we propose six con- cepts to guide SFM implementation. These concepts include: Best Management Practices (BMPs)/Reduced Impact Logging (RIL), biodiversity conservation, forest protection, multi-scale planning, participatory forestry, and sustained forest production. We place Downloaded By: [Keeton, W. S.] At: 16:17 8 March 2010 these concepts within an iterative decision-making framework of planning, implementation, and assessment, and provide brief definitions of and practices delimited by each concept. A case study describing SFM in the neo-tropics illustrates a potential application of our six concepts.
    [Show full text]
  • “Catastrophic” Wildfire a New Ecological Paradigm of Forest Health by Chad Hanson, Ph.D
    John Muir Project Technical Report 1 • Winter 2010 • www.johnmuirproject.org The Myth of “Catastrophic” Wildfire A New Ecological Paradigm of Forest Health by Chad Hanson, Ph.D. Contents The Myth of “Catastrophic” Wildfire: A New Ecological Paradigm of Forest Health 1 Preface 1 Executive Summary 4 Myths and Facts 6 Myth/Fact 1: Forest fire and home protection 6 Myth/Fact 2: Ecological effects of high-intensity fire 7 Myth/Fact 3: Forest fire intensity 12 Myth/Fact 4: Forest regeneration after high-intensity fire 13 Myth/Fact 5: Forest fire extent 14 Myth/Fact 6: Climate change and fire activity 17 Myth/Fact 7: Dead trees and forest health 19 Myth/Fact 8: Particulate emissions from high-intensity fire 20 Myth/Fact 9: Forest fire and carbon sequestration 20 Myth/Fact 10: “Thinning” and carbon sequestration 22 Myth/Fact 11: Biomass extraction from forests 23 Summary: For Ecologically “Healthy Forests”, We Need More Fire and Dead Trees, Not Less. 24 References 26 Photo Credits 30 Recommended Citation 30 Contact 30 About the Author 30 The Myth of “Catastrophic” Wildfire A New Ecological Paradigm of Forest Health ii The Myth of “Catastrophic” Wildfire: A New Ecological Paradigm of Forest Health By Chad Hanson, Ph.D. Preface In the summer of 2002, I came across two loggers felling fire-killed trees in the Star fire area of the Eldorado National Forest in the Sierra Nevada. They had to briefly pause their activities in order to let my friends and I pass by on the narrow dirt road, and in the interim we began a conversation.
    [Show full text]
  • Silviculture and Forest Management Under a Rapidly Changing Climatetp
    Silviculture and Forest Management Under 1 a Rapidly Changing ClimateTP PT 2 Carl N. SkinnerTP PT Abstract Climate determines where and how forests grow. Particularly in the West, precipitation patterns regulate forest growth rates. Wet years promote “boom” vegetative conditions, while drought years promote “bust.” Are managers safe in assuming that tomorrow’s climate will mimic that of the last several decades? For the last ~100 to ~150 years, climate has been warming at what appears to be an unusually rapid rate and is projected to continue into the foreseeable future. Increased temperatures are projected to lead to broad-scale alteration of storm tracks changing precipitation patterns in both seasonality and amounts. Multiple lines of paleoecological data show that such changes in the past, which were rarely as rapid, were accompanied by major reorganization of vegetation at continental scales. Exercises in modeling of possible ecological responses have shown the complexity in understanding potential responses of forests. Additionally, these exercises indicate that dramatic changes in natural disturbance processes are likely. Indeed, some believe that the responses of disturbance regimes to climate change may be emerging in the more frequent outbreaks of very large fires, widespread tree die-off across the southwest, expansive insect infestations in the Rocky Mountains, and more rapid and earlier melting of snow packs through the West. Developing both short- and long-term forest management responses will be challenging. Therefore, silviculturists must be aware of the nature of and implications of climate change in order to develop management strategies that may help to reduce adverse effects while sustaining healthy, productive forests.
    [Show full text]
  • FOREST ECOLOGY and MANAGEMENT NEWS a Newsletter for Department of Forest Ecology and Management Staff, Students and Alumni
    FOREST ECOLOGY AND MANAGEMENT NEWS A Newsletter for Department of Forest Ecology and Management Staff, Students and Alumni Vol. 6, No. 1 March 2003 won’t deter them from following a family in Wisconsin. Check out the News from dream or allow them to accept failure. Land Between the Lakes web site at This year’s graduating class is no excep- <http://www.lbl.org/> as you plan your the Chair tion, and most already are immersed in next camping trip. Brian would love to graduate study, work, or travel, both see old (and young) classmates visit home and abroad. It is also a pleasure to him. Tuesday, February 18th ranks as a ‘dou- report that our department successfully ble barreled’kind of day – one that most completed its periodic Society of Kate Wipperman (BS 2002) is working chairs hope they never experience. The American Foresters accreditation review. as a Project Assistant for the Natural day began with a dean’s budget meeting We met all educational requirements and Heritage Land Trust (NHLT) in where I learned just what part of our col- satisfied every standard – a fine tribute Madison. Kate majored in Recreation lective hide we would lose to meet the to the university and our faculty. Resources Management and Botany and state-mandated 2003-04 budget cuts. also received an IES Certificate. In Forest Ecology and Management Please read and enjoy this newsletter. August she landed a position with returned a sum in excess of $10,000, but We like to think we put it together with NHLT, an organization dedicated to the I felt fortunate knowing that other our alumni and friends in mind.
    [Show full text]
  • Non-Timber Forest Products in Brazil: a Bibliometric and a State of the Art Review
    sustainability Review Non-Timber Forest Products in Brazil: A Bibliometric and a State of the Art Review Thiago Cardoso Silva * , Emmanoella Costa Guaraná Araujo, Tarcila Rosa da Silva Lins , Cibelle Amaral Reis, Carlos Roberto Sanquetta and Márcio Pereira da Rocha Department of Forestry Engineering and Technology, Federal University of Paraná, 80.210-170 Curitiba, Brazil; [email protected] (E.C.G.A.); [email protected] (T.R.d.S.L.); [email protected] (C.A.R.); [email protected] (C.R.S.); [email protected] (M.P.d.R.) * Correspondence: [email protected]; Tel.: +55-8199-956-6178 Received: 4 July 2020; Accepted: 22 August 2020; Published: 2 September 2020 Abstract: Non-timber forest products (NTFPs) are a consolidated source of income and acquisition of inputs from forest environments. Therefore, the objective of this work was to carry out a collection of publications on NTFPs in Brazil, until 2019, available in the Scopus database, presenting a bibliometric review and the state of the art of this theme from the evaluation of these publications, discussing the challenges of Brazilian legislation on NTFPs. After screening the articles of interest, 196 documents were evaluated, in which they were observed institutions and authors, analyzing networks of citations and terms used, areas of forest sciences and sciences that encompass the most explored biomes and the most studied species. The results showed that the concern to research on NTFPs in Brazil began in the 1990s, with an increase in the number of publications over the years. Besides that, the research on NTFPs is multidisciplinary, with emphasis on the areas of Agricultural and Biological Sciences and Environmental Science.
    [Show full text]