Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Comparative genomic and transcriptomic analysis of Wangiella dermatitidis, a major cause of phaeohyphomycosis and a model black yeast human pathogen Zehua Chen*, Diego A. Martinez*, Sharvari Gujja*, Sean M. Sykes*, Qiandong Zeng*, Paul J. Szaniszlo§, Zheng Wang†,1, Christina A. Cuomo*,1 *Broad Institute of MIT and Harvard, Cambridge, MA 02142. §The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712. †Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375. 1Corresponding authors: [email protected] and [email protected] Data availability: The assembly and annotation of Wangiella dermatitidis are available at the NCBI nucleotide database under the accession number AFPA01000000; RNA-Seq differential expression analysis of pH stress is available at the NCBI GEO database under record GSE51646. DOI: 10.1534/g3.113.009241 Figure S1 Independent expansion of MFS and APC transporter families in W. dermatitidis and selected aspergilli. (A) Average number of genes per genome for different category of MFS and APC families (Core families are the ortholog clusters shared by all four fungal groups; Shared, present in at least two out of the four fungal groups; Unique, unique to each group, including species-specific paralogous clusters and unclustered genes). (B) Enrichment of different category of MFS and APC transporters under different stress conditions (low pH or radiation). A positive normalized enrichment score (NES) indicates enrichment under stress conditions (pH 2.5 or with radiation), and a negative score indicates enrichment underChen normal et al, Figure conditions S1 (pH 6 or no radiation). Significant enrichments noted with **: q-value < 0.05; ***: q-value < 0.01. 2 SI Z. Chen et al. Z I J P C M G K A N F T H A. fumigatus Chr6 (Z) (C) T (C) (N) (sidI) (A) J K I M G F H P W. dermatitidis sc1.2 Transcription factor O-methyl transferase Long-chain fatty-acid-CoA ligase Amino cyclopropane carboxylate synthase Glutathione S-transferase Essential protein 5 Kb Dipeptidase MFS transporter Hypothetical protein Non-ribosomal peptide synthetase Methyltransferase Cytochrome P450 monooxygenase Thioredoxin reductase Figure S2 Gliotoxin biosynthetic gene cluster in A. fumigatus and conservation in W. dermatitidis. Gene symbols above each gene indicate the corresponding orthologs; symbols in parentheses were not identified as single copy orthologs of the corresponding A. fumigatus genes, but are part of the gene cluster and share sequence similarity. Gene identifiers for W. dermatitidis range from HMPREF1120_02977 (GliZ) to HMPREF1120_02933 (GliP). Chen et al, Figure S2 Z. Chen et al. 3 SI r H e d M M H W P Y M S H C R 0 P M P 8 E T B b m 6 R N P F H u C 4 m E r R 1 C i 5 2 0 g A Y E F 1 T i m U 2 C f 2 6 m o F 1 P 0 n u 9 0 0 F 0 p 1 8 2 u 1 L A 3 0 f 9 6 d 2 o r 2 6 1 i S 1 g 0 2 0 1 3 r A . r 0 A 0 n e 2 9 1 0 4 1 2 f c 8 4 e 8 1 c r f 1 t 5 0 u 0 0 3 6 0 7 F A 6 A 0 e 4 6 4 9 S T e 0 1 8 5 6 9 c C E 1 d n 0 5 4 . h . M 2 g N t 2 2 9 2 3 0 5 G S R 1 0 5 W 0 9 S G 8 W 3 3 0 8 6 c M t 7 g a W R p P 0 3 G 0 h 7 A g 9 c 9 r 9 3 r M 3 A o 7 3 0 E 5 6 a I g 8 1 c n 0 e e 5 6 d 7 M A W 0 7 5 0 8 f m N 5 1 3 1 0 5 r T N u e C N n 0 4 3 2 7 0 W H u 1 N A C T d m r f R 5 5 9 0 g 8 4 A . 2 m H C A d e P A 6 9 T 0 4 0 A 9 0 I U 5 f e r P E 9 2 m H T 4 u Y 1 2 2 i M 0 7 4 A r f T 7 1 b I E m S r I 0 C Y T 8 3 n H 1 u C E 1 2 0 A i o H U F 5 r 2 2 n g T 9 T H T 2 A T C E 5 M H 1 6 id C 0 1 7 n N Y R 3 1 P 2 1 8 N i P 0 3 R 3 1 0 c g M d m H E N 1 2 r M G 0 i u M F C 1 3 T a 0 n f P 1 2 t H M A A g R 11 U 2 e I G 0 i H E 2 0 6 T r C R 7 0 n M F 0 9 t E 4 4 A P 1 9 M e 9 0 0 ig R 1 0 0 r T 4 1 3 n E 2 0 6 th N g 3 A F 0 48 N e A 3 4 1 0 2 c u 0 20 M 12 3 W ra f g 0 Y 0 52 A 16 2 id C 0 5 de n 1 n TH 1 W r A 1g A um 2 18 0 5 Af T 3 6 de n 44 0 HI 02 W r A 2 2 ig TE 5 d 1 20 An 2 38 e AN 0 0 10 M r 8g 40 er N 87 th fu 09 Tt CU 82 e A 4g 00 0 T 0 63 42 te An 6 ra 23 r E Nc the N IT 68 M cra TH 52 67 er U0 992 Wd NC 22 115 Class VI TH 09 YC 120 Chitin Synthase M EF1 m PR Cim HM 62 068 IMG Trub AN C 657 4566 G07 An0 Anid TER Afum 7g055 2600 70An u1g1 Afu ig Af 2g018 6Anid 70Afu N104 T m A nig ERG02 5290A 562Tru An08g0 b 791Wder CIMG0 F112001 5598Cimm HMPRE HMPREF11200 23CScer Class II 6816Wder YBR0 Chitin Synthase AN0799Anid Afu8g05630Afum NCU04251Ncra An09g02290Anig er AN1555Anid THITE2108832Tt 3Mthe TERG08867T CTH230258 rub MY CI WScer MG0876 YNL192 6Cimm om HMP 2cSP REF112 3G6.1 00772 PAC1 ig NCU 1Wder S 60An 09324 4g006 M Ncra An1 fum YCT 80A H22 041 TH 9638 fu4g nid ITE 8Mth A 32A 211 e Class IV N70 b NC 3371 A Tru U04 Tte Chitin Synthase 49 T 350 r 056 m HIT Nc RG Cim E2 ra TE 55 r MY 115 086 de CT 879 G W H H Tt IM 981 er M 11 er C 07 Tt PR 291 20 75 C EF 6 11 76 he IM 11 Mth F 14 Mt G 20 e RE 2 4 a TE 05 0 P TE 76 cr R 02 87 HM HI 9 N A G 1 77 T 30 9 er N 04 Ci W 2 23 c 63 9 m de TH 5 S A 1 18 m r C U0 W m fu 7 T Y C 8 o A 2g An ru M N 03 Sp n 1 id b R 1 um 0 34 B 0 f H 2g 3 Y 9. A ig M 0 0 0 20 n N P 23 A 17 4 A id C R 4 fu C 4 0 n M U E 0 m B 1 1 0 F A P g 0 A m Y 4 1 n S 3 4 3 T C 3 1 ig Class I fu 0 2 im b H T 5 20 A 9g 5 C u C I H 2 0 2 r r I T N 0 n N 7 T e T M E 2 87 Chitin Synthase A A 4 3 d g E G 2 2 c 6 i A 9 ra 7 5 4 W n R 1 9 6 0 8 m A N G 0 1 4 W 3 9 A 6 5 5 0 G 0 7 fu g A f 0 8 d 4 0 i u 3 0 2 7 2 e M 8 A n d M n 2 1 4 M r I G 6 i r 2 7 0 3 0 A n A 0 g 8 9 C R 0 e Y 2 1 1 C T th E 0 6 0 A t e H n A 1 A C g 3 9 i t e T 2 7 6 T h a M 0 n m e g 7 t r N T 0 4 r 1 0 3 g T f 7 i T 2 i M u 4 m 8 c C 2 d 0 6 C C P H r 1 1 6 M m d H g n r i b 8 3 0 u g 3 0 N I Y R F 0 u I U 0 n m e b A n u M I g 6 5 4 4 5 f M 1 g T A E r 1 A 1 C E u 6 8 d 0 0 0 0 3 N A A m f 0 G E 1 f i G R 1 T u 0 8 T 9 2 F 7 0 A 0 1 A A W P 6 0 9 8 1 m 1 9 C H 3 1 n 0 2 1 1 0 n M 2 7 3 0 6 0 7 2 1 3 A 7 8 0 i 0 3 2 0 5 0 2 g H 2 5 0 2 A 0 5 5 M E 0 2 2 Protein domains: H 9 7 2 U 3 0 n 6 5 6 2 N A T g 7 T 0 3 t I N 0 i h C 2 0 4 7 0 g 7 2 g 8 c f C 7 u e H 1 A 0 5 5 0 r N 7 8 C m Y C a T n G 9 9 u 0 Glyco_hydro_12 7 7 f i M A R G i m 2 T m 3 5 A E 1 t M Class VII m m M e I W T 1 r C F t d Glycos_transf_2 h Chitin Synthase E e e r R Chitin_synth_1N P M Branch colors H Cellulose_synt W.
Recommended publications
  • Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020 Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens LU LU ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1148-7 UPPSALA urn:nbn:se:uu:diva-435815 2021 Dissertation presented at Uppsala University to be publicly examined in Room A1:111a, BMC, Husargatan 3, Uppsala, Friday, 16 April 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Christian Cambillau. Abstract Lu, L. 2021. Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020. 91 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1148-7. As antibiotic resistance of various pathogens emerged globally, the need for new effective drugs with novel modes of action became urgent. In this thesis, we focus on infectious diseases, e.g. tuberculosis, malaria, and nosocomial infections, and the corresponding causative pathogens, Mycobacterium tuberculosis, Plasmodium falciparum, and the Gram-negative ESKAPE pathogens that underlie so many healthcare-acquired diseases. Following the same- target-other-pathogen (STOP) strategy, we attempted to comprehensively explore the properties of three promising drug targets. Signal peptidase I (SPase I), existing both in Gram-negative and Gram-positive bacteria, as well as in parasites, is vital for cell viability, due to its critical role in signal peptide cleavage, thus, protein maturation, and secreted protein transport. Three factors, comprising essentiality, a unique mode of action, and easy accessibility, make it an attractive drug target.
    [Show full text]
  • Design of a Highly Selective Quenched Activity-Based Probe
    Article pubs.acs.org/JACS Design of a Highly Selective Quenched Activity-Based Probe and Its Application in Dual Color Imaging Studies of Cathepsin S Activity Localization † † † † ∥ Kristina Oresic Bender, Leslie Ofori, Wouter A. van der Linden, Elliot D. Mock, Gopal K. Datta, ∥ § † † ∥ # Somenath Chowdhury, Hao Li, Ehud Segal, Mateo Sanchez Lopez, Jonathan A. Ellman, , ⊥ † ‡ § † ⊥ Carl G. Figdor, Matthew Bogyo,*, , , and Martijn Verdoes*, , † ‡ § Departments of Pathology, Microbiology and Immunology, and Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, United States ∥ Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States ⊥ Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands *S Supporting Information ABSTRACT: The cysteine cathepsins are a group of 11 proteases whose function was originally believed to be the degradation of endocytosed material with a high degree of redundancy. However, it has become clear that these enzymes are also important regulators of both health and disease. Thus, selective tools that can discriminate between members of this highly related class of enzymes will be critical to further delineate the unique biological functions of individual cathepsins. Here we present the design and synthesis of a near-infrared quenched activity-based probe (qABP) that selectively targets cathepsin S which is highly expressed in immune cells. Importantly, this high degree of selectivity is retained both in vitro and in vivo. In combination with a new green-fluorescent pan-reactive cysteine cathepsin qABP we performed dual color labeling studies in bone marrow-derived immune cells and identified vesicles containing exclusively cathepsin S activity.
    [Show full text]
  • Towards Therapy for Batten Disease
    Towards therapy for Batten disease Mariana Catanho da Silva Vieira MRC Laboratory for Molecular Cell Biology University College London PhD Supervisor: Dr Sara E Mole A thesis submitted for the degree of Doctor of Philosophy University College London September 2014 Declaration I, Mariana Catanho da Silva Vieira, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract The gene underlying the classic neurodegenerative lysosomal storage disorder (LSD) juvenile neuronal ceroid lipofuscinosis (JNCL) in humans, CLN3, encodes a polytopic membrane spanning protein of unknown function. Several studies using simpler models have been performed in order to further understand this protein and its pathological mechanism. Schizosaccharomyces pombe provides an ideal model organism for the study of CLN3 function, due to its simplicity, genetic tractability and the presence of a single orthologue of CLN3 (Btn1p), which exhibits a functional profile comparable to its human counterpart. In this study, this model was used to explore the effect of different mutations in btn1 as well as phenotypes arising from complete deletion of the gene. Different btn1 mutations have different effects on the protein function, underlining different phenotypes and affecting the levels of expression of Btn1p. So far, there is no cure for JNCL and therefore it is of great importance to identify novel lead compounds that can be developed for disease therapy. To identify these compounds, a drug screen with btn1Δ cells based on their sensitivity to cyclosporine A, was developed. Positive hits from the screen were validated and tested for their ability to rescue other specific phenotypes also associated with the loss of btn1.
    [Show full text]
  • House Dust Mites: Ecology, Biology, Prevalence, Epidemiology and Elimination Muhammad Sarwar
    Chapter House Dust Mites: Ecology, Biology, Prevalence, Epidemiology and Elimination Muhammad Sarwar Abstract House dust mites burrow cheerfully into our clothing, pillowcases, carpets, mats and furniture, and feed on human dead skin cells by breaking them into small particles for ingestion. Dust mites are most common in asthma allergens, and some people have a simple dust allergy, but others have an additional condition called atopic dermatitis, often stated to as eczema by reacting to mites with hideous itching and redness. The most common type of dust mites are Dermatophagoides farinae Hughes (American house dust mite) and Dermatophagoides pteronyssinus Trouessart (European house dust mite) of family Pyroglyphidae (Acari), which have been associated with dermatological and respiratory allergies in humans such as eczema and asthma. A typical house dust mite measures 0.2–0.3 mm and the body of mite has a striated cuticle. A mated female house dust mite can live up to 70 days and lays 60–100 eggs in the last 5 weeks of life, and an average life cycle is 65–100 days. In a 10-week life span, dust mite produces about 2000 fecal particles and an even larger number of partially digested enzyme-covered dust particles. They feed on skin flakes from animals, including humans and on some mold. Notably, mite’s gut contains potent digestive enzymes peptidase 1 that persist in their feces and are major induc- ers of allergic reactions, but its exoskeleton can also contribute this. Allergy testing by a physician can determine respiratory or dermatological symptoms to undergo allergen immunotherapy, by exposing to dust mite extracts for “training” immune system not to overreact.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378711; this version posted November 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage A. Manuel Liaci1, Barbara Steigenberger2,3, Sem Tamara2,3, Paulo Cesar Telles de Souza4, Mariska Gröllers-Mulderij1, Patrick Ogrissek1,5, Siewert J. Marrink4, Richard A. Scheltema2,3, Friedrich Förster1* Abstract The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo- microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. This unique architecture generates specificity for thousands of SPs based on the length of their hydrophobic segments. Keywords Signal Peptidase Complex, Signal Peptide, Protein Maturation, Membrane Thinning, cryo-EM, Crosslinking Mass Spectrometry, Molecular Dynamics Simulations, Protein Secretion, ER Translocon 1Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
    [Show full text]
  • Sequence and Functional Analysis of Schistosoma
    MINING FOR CONSERVED MOTIFS AND SIGNIFICANT FUNCTIONS IN S. MANSONI CERCARIAL SECRETIONS Amy L. Schmidbauer Submitted to the faculty of the School of Informatics in partial fulfillment of the requirements for the degree Master of Science in Bioinformatics, Indiana University December 30, 2006 ii Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics. (Committee Chair’s signature)_______________________ Sean D. Mooney, Ph.D., Chair Master’s Thesis Committee (Second member’s signature)________________________ Xiaoman Shawn Li, Ph.D. (Third member’s signature)__________ _______________ William J. Sullivan, Ph.D. ii © 2006 Amy L. Schmidbauer All Rights Reserved iii ACKNOWLEDGMENTS This project would not have been possible without the guidance and support of many people including faculty, advisors, colleagues, friends and family. I am extremely grateful to my advisor, Dr. Sean Mooney, for welcoming me into his laboratory as a graduate student, and for providing, not only computing resources, but continued support, suggestions, and guidance as, what started out as an independent study project, grew into what became this thesis. I extend my sincere appreciation to Dr. Giselle Knudsen, an honorary member of my thesis committee, for the original project inspiration, for her enthusiastic encouragement, insight, and direction throughout the project, and for her thoughtful review of this thesis. I would like also like to extend a heartfelt thank you to Dr. William Sullivan and Dr. Xiaoman Li for their willingness to lend their time to reviewing my thesis and for the insightful feedback they provided. For statistical expertise and support I would like to extend my deepest appreciation to Dr.
    [Show full text]
  • Bunyamwera Orthobunyavirus Glycoprotein Precursor Is Processed by Cellular Signal Peptidase and Signal Peptide Peptidase
    Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase Xiaohong Shia,1, Catherine H. Bottingb, Ping Lia, Mark Niglasb, Benjamin Brennana, Sally L. Shirranb, Agnieszka M. Szemiela, and Richard M. Elliotta,2 aMedical Research Council–University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, United Kingdom; and bBiomedical Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved June 17, 2016 (received for review February 29, 2016) The M genome segment of Bunyamwera virus (BUNV)—the pro- (II and IV) (Fig. S1A), and its N-terminal domain (I) is required totype of both the Bunyaviridae family and the Orthobunyavirus for BUNV replication (8). genus—encodes the glycoprotein precursor (GPC) that is proteo- Cleavage of BUNV GPC is mediated by host proteases, but the lytically cleaved to yield two viral structural glycoproteins, Gn and Gc, details of which proteases are involved and the precise cleavage sites and a nonstructural protein, NSm. The cleavage mechanism of ortho- have not been clarified. Experimental data on GPC processing have bunyavirus GPCs and the host proteases involved have not been only been reported for snowshoe hare orthobunyavirus (SSHV); the clarified. In this study, we investigated the processing of BUNV GPC C terminus of SSHV Gn was determined by C-terminal amino acid and found that both NSm and Gc proteins were cleaved at their own sequencing to be an arginine (R) residue at position 299 (9) (Fig.
    [Show full text]
  • Data-Mining Approaches Reveal Hidden Families of Proteases in The
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Data-Mining Approaches Reveal Hidden Families of Proteases in the Genome of Malaria Parasite Yimin Wu,1,4 Xiangyun Wang,2 Xia Liu,1 and Yufeng Wang3,5 1Department of Protistology, American Type Culture Collection, Manassas, Virginia 20110, USA; 2EST Informatics, Astrazeneca Pharmaceuticals, Wilmington, Delaware 19810, USA; 3Department of Bioinformatics, American Type Culture Collection, Manassas, Virginia 20110, USA The search for novel antimalarial drug targets is urgent due to the growing resistance of Plasmodium falciparum parasites to available drugs. Proteases are attractive antimalarial targets because of their indispensable roles in parasite infection and development,especially in the processes of host e rythrocyte rupture/invasion and hemoglobin degradation. However,to date,only a small number of protease s have been identified and characterized in Plasmodium species. Using an extensive sequence similarity search,we have identifi ed 92 putative proteases in the P. falciparum genome. A set of putative proteases including calpain,metacaspase,and s ignal peptidase I have been implicated to be central mediators for essential parasitic activity and distantly related to the vertebrate host. Moreover,of the 92,at least 88 have been demonstrate d to code for gene products at the transcriptional levels,based upon the microarray and RT-PCR results,an d the publicly available microarray and proteomics data. The present study represents an initial effort to identify a set of expressed,active,and essential proteases as targets for inhibitor-based drug design. [Supplemental material is available online at www.genome.org.] Malaria remains one of the most dangerous infectious diseases metalloprotease (falcilysin; Eggleson et al.
    [Show full text]
  • Supplementary Table S1 List of Proteins Identified with LC-MS/MS in the Exudates of Ustilaginoidea Virens Mol
    Supplementary Table S1 List of proteins identified with LC-MS/MS in the exudates of Ustilaginoidea virens Mol. weight NO a Protein IDs b Protein names c Score d Cov f MS/MS Peptide sequence g [kDa] e Succinate dehydrogenase [ubiquinone] 1 KDB17818.1 6.282 30.486 4.1 TGPMILDALVR iron-sulfur subunit, mitochondrial 2 KDB18023.1 3-ketoacyl-CoA thiolase, peroxisomal 6.2998 43.626 2.1 ALDLAGISR 3 KDB12646.1 ATP phosphoribosyltransferase 25.709 34.047 17.6 AIDTVVQSTAVLVQSR EIALVMDELSR SSTNTDMVDLIASR VGASDILVLDIHNTR 4 KDB11684.1 Bifunctional purine biosynthetic protein ADE1 22.54 86.534 4.5 GLAHITGGGLIENVPR SLLPVLGEIK TVGESLLTPTR 5 KDB16707.1 Proteasomal ubiquitin receptor ADRM1 12.204 42.367 4.3 GSGSGGAGPDATGGDVR 6 KDB15928.1 Cytochrome b2, mitochondrial 34.9 58.379 9.4 EFDPVHPSDTLR GVQTVEDVLR MLTGADVAQHSDAK SGIEVLAETMPVLR 7 KDB12275.1 Aspartate 1-decarboxylase 11.724 112.62 3.6 GLILTLSEIPEASK TAAIAGLGSGNIIGIPVDNAAR 8 KDB15972.1 Glucosidase 2 subunit beta 7.3902 64.984 3.2 IDPLSPQQLLPASGLAPGR AAGLALGALDDRPLDGR AIPIEVLPLAAPDVLAR AVDDHLLPSYR GGGACLLQEK 9 KDB15004.1 Ribose-5-phosphate isomerase 70.089 32.491 32.6 GPAFHAR KLIAVADSR LIAVADSR MTFFPTGSQSK YVGIGSGSTVVHVVDAIASK 10 KDB18474.1 D-arabinitol dehydrogenase 1 19.425 25.025 19.2 ENPEAQFDQLKK ILEDAIHYVR NLNWVDATLLEPASCACHGLEK 11 KDB18473.1 D-arabinitol dehydrogenase 1 11.481 10.294 36.6 FPLIPGHETVGVIAAVGK VAADNSELCNECFYCR 12 KDB15780.1 Cyanovirin-N homolog 85.42 11.188 31.7 QVINLDER TASNVQLQGSQLTAELATLSGEPR GAATAAHEAYK IELELEK KEEGDSTEKPAEETK LGGELTVDER NATDVAQTDLTPTHPIR 13 KDB14501.1 14-3-3
    [Show full text]
  • Genome-Wide Gene Expression Profiles of Ovarian Carcinoma: Identification of Molecular Targets for the Treatment of Ovarian Carcinoma
    365-384 30/3/2009 09:55 Ì Page 365 MOLECULAR MEDICINE REPORTS 2: 365-384, 2009 365 Genome-wide gene expression profiles of ovarian carcinoma: Identification of molecular targets for the treatment of ovarian carcinoma DRAGOMIRA NIKOLAEVA NIKOLOVA1,4, NIKOLAI DOGANOV2, RUMEN DIMITROV2, KRASIMIR ANGELOV3, SIEW-KEE LOW1, IVANKA DIMOVA4, DRAGA TONCHEVA4, YUSUKE NAKAMURA1 and HITOSHI ZEMBUTSU1 1Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; 2University Hospital of Obstetrics and Gynecology ‘Maichin Dom’, Sofia 1431; 3National Hospital of Oncology, Sofia 1233; 4Department of Medical Genetics, Medical University of Sofia, Sofia 1431, Bulgaria Received October 31, 2008; Accepted January 7, 2009 DOI: 10.3892/mmr_00000109 Abstract. This study aimed to clarify the molecular mecha- in women. As there are no specific indicators or symptoms of nisms involved in ovarian carcinogenesis, and to identify ovarian cancer during the early stages of the disease, the candidate molecular targets for its diagnosis and treatment. majority of patients with epithelial ovarian cancer (EOC) are The genome-wide gene expression profiles of 22 epithelial diagnosed at an advanced stage, with involvement of other ovarian carcinomas were analyzed with a microarray represent- sites such as the upper abdomen, pleural space and paraaortic ing 38,500 genes, in combination with laser microbeam lymph nodes. The cancer antigen 125 assay (CA-125) has been microdissection. A total of 273 commonly up-regulated used to screen for ovarian cancer, but is not specific; only 50% transcripts and 387 down-regulated transcripts were identified of patients with early ovarian cancer test positive using this in the ovarian carcinoma samples.
    [Show full text]