Riboswitch an Area of Novel Breakthrough in Rna

Total Page:16

File Type:pdf, Size:1020Kb

Riboswitch an Area of Novel Breakthrough in Rna International Journal of Applied and Natural Sciences (IJANS) ISSN (P): 2319–4014; ISSN (E): 2319–4022 Vol. 9, Issue 1, Dec-Jan 2020; 67–92 © IASET RIBOSWITCH: AN AREA OF NOVEL BREAKTHROUGH IN RNA WORLD Harpreet Kaur & Rajan Keshri Research Scholar, Guru Arjan Dev Institute of Development Studies, Amritsar, India ABSTRACT Fundamentally, riboswitches are known to be highly structured and conserved metabolite binding domains, known to be aptamer, which are locus within mRNAs. When we talk about RNA world, riboswitches are ranked among the trending topics. Since its discovery from 2002, there is a large amount of feature disclosed till now and thanks to computational analysis this finding are increasing every year with a fast rate. This work club up the information regarding new findings within the field of riboswitches, which include data about its new classes discovery and its application in the field of gene regulation mechanism, medical science, inter-cellular signalling, biosensors and many more. KEYWORDS : Riboswitches, Discovery, Gene Regulation, Medical, Signalling, Biosensors Article History Received: 18 Dec 2019 | Revised: 27 Dec 2019 | Accepted: 13 Jan 2020 INTRODUCTION Riboswitches are complex folded RNA domains that serve as receptors for specific metabolites. These domains are found in the non-coding portions of various mRNAs, where they control gene expression by harnessing allosteric structural changes that are brought about by metabolite binding. New findings indicate that riboswitches are robust genetic elements that are involved in regulating fundamental metabolic processes in many organisms. (Mandal & Breaker, 2004) Conceptually riboswitches are whole made of complicated and related folds of RNA domains, within certain mRNAs that serve as precise demodulator or as receptors for ad hoc metabolites. Riboswitches were recognised for chip in to the regulation of numerous fundamental metabolic pathways in certain bacteria which are found in the non-coding portions of various mRNAs, where they control gene expression by adjusting allosteric structural changes that are brought about by metabolite binding (Mandal et al., 2003; Mandal& Breaker, 2004). Riboswitches where detected to be expand in eubacteria, that is, this system of modulation is among the most substantial mechanism by which metabolic genes are controlled. However, many discoveries in the recent past of riboswitch categories have been depicting not only surprisingly complex mechanisms for regulating gene expression but also new high-resolution structural models of these RNAs which also gives an insight into the molecular details of metabolite recognition by natural RNA aptamer (Tucker & Breaker, 2005). RNA was always found to be more affectionate stimuli in managing gene expression rather than it was thought to be (Lin he & Hannon, 2004; Erdmann et al., 2001). It has been considered from long time that differential folding of RNA invests its concise contribution in transcriptional attenuation (Henkin & Yanofsky 2002). In recent past there are novel discoveries of RNA-based regulatory mechanisms admitting pathways involving antisense (Storz et al, 2004) and tRNA–mRNA interactions (Grundy & Henkin, 2003), control of translation by temperature-dependent modulation of RNA structure (Chowdhury et al., 2003; Morita et al., 1999; Morita et al., 1999b; Kamath & Gross., 1991) and the involvement of micro-RNAs as trans-acting genetic factors (Bartel, 2004). www.iaset.us [email protected] 68 Harpreet Kaur & Rajan Keshri The often-ness in which these breakthroughs have been erupting one after another signifies RNA has a crucial relationship in cellular control processes. And this has been conformably proven to be true for bacteria, in recent findings of gene control by riboswitches are revealing a distributive organization of RNA-mediated gene control (Winkler & Breaker, 2003;Vitreschak, Rodionov, Mironov & Gelfand, 2004; Lai, 2003; Grundy & Henkin, 2004 and Brantl, 2004). ORIGIN OF RIBOSWITCHES Its starts with the discovery of the lac repressor (Gilbert & muller., 1966) a huge body of data came forth that described a diversity of protein genetic factors that respond to various metabolites and signalling compounds. From that vast data of scientific literature arise an event which represents the gene control phenomenon. Specifically scheming was a series of reports that brought out the unique genetic-control characteristics of the btu B gene of Escherichia coli (Lawrence & Roth., 1995) and the cob operon of Salmonella typhimurium (Roth et al., 1993). These genes are responsible for maintaining adequate levels of coenzyme B12 in the cell either by importing or synthesizing this complex metabolite The matter of Riboswitches beginning and evolution has made the study of RNA civilization very challenging. In vitro choice of experimentation disclosed the proportional relief with which RNA could be developed to bind with specific ligands, proposing that it takes a relatively very less time for natural selection to get transform into metabolite-binding domains from RNA sequences. So, we can say that, narrowly distributed riboswitches may have come up late during the course of evolutionary development. These types of cases might have given mount to independent classes of riboswitches which are selective or specific to the similar compound, e.g., SAM (Corbino et al., 2005). The existence of TPP riboswitches in all three kingdoms of life signifies the early inception of this riboswitch category. It is a matter of concern that, at what stage of evolution could riboswitches has awakened? So, as per the RNA world hypothesis (Gilbert, 1986), at certain point, RNA develop to behave as a catalyst of chemical reactions as well as a carrier of genetic information. The catalytic potentiality of the glmS riboswitch-ribozyme and the power of riboswitches to act together with ‘‘ancient’’ coenzymes, such as, SAM, FMN or TPP which would have extended the former repertoire of biochemical reactions, supply obliging causes to propose that riboswitch-like molecules were subservient for the origin and evolution of the primordial RNA world (Breaker, 2006). GENE-CONTROL MECHANISMS OF A RIBOSWITCH In handling of coenzyme-B12 riboswitch, two major mode of gene control are obvious. At first stage regulation of RNA transcription which includes the ligand –dependent formation of an intrinsic terminator stem. This Intrinsic terminator are long stem-loop structure which are generally accompanied by a stretch of six or more U residues, which make RNA polymerase to terminate transcription before the coding region of the mRNA is constructed (Gusarov & Nudler, 1999). When the content of coenzyme B12 is not optimum, transcription of an mRNA which is linked with the coenzyme-B12 riboswitch generate a nascent mRNA which is in the aptamer domain remain uncomplicated with ligand. The detached aptamer domain allows establishment of an ‘ANTI-TERMINATOR’ stem, which prevents establishment of the intrinsic terminator stem and hence, allows transcription of the complete mRNA. However, when coenzyme-B12 content are optimum, the nascent mRNA binds to a coenzyme-B12 molecule and the allosteric change in structure allows the intrinsic terminator stem to generate. Transcription abortion results and gene expression is stopped as the coding region of the mRNA is not constructed. As the only prof for this system with the coenzyme-B12 riboswitch comes from sequence analysis (Vitreschak et al., 2003), leading observational proof for this mechanism exists for other riboswitch classes, ( Winkler, Nahvi,& Breaker., 2002; Winkle, Cohen-Chalamish, & Breaker, 2002; Mironov et al., 2002; Mandal, Boese, Impact Factor (JCC): 5.9238 NAAS Rating 3.73 Riboswitch: An Area of Novel Breakthrough in RNA World 69 Barrick, Winkler,& Breaker, 2003;McDaniel, Grundy, Artsimovitch, & Henkin, 2003; Epshtein,, Mironov & Nudler, 2003 )The next mode of operandi that is practice by the coenzyme- B12 riboswitch functions at the stage of translation initiation. As like allosteric changes in aptamer structure can control the establishment of intrinsic terminator and anti-terminator stems, coenzyme-B12 binding causes structural changes in total stretch of mRNAs to assure access to the RIBOSOME- BINDING SITE. Specifically, it is observed (Vitreschak, Rodionov, Mironov& Gelfand, 2003 ) that ribosomes are not fit to construct steady, complexes with the btuB mRNA of E. coli when the coenzyme B12 is introduce, in an in vitro assay. This monitoring matched, with sequence observed (Vitreschak, Rodionov, Mironov& Gelfand, 2003) andbiochemical (Nahvi et al., 2004) proof for coenzyme-relying alternative folding by the btuB 5 ′-UTR, supports this process for gene control. In uncommon instances, it seems that both transcription and translation can be controlled at the same time. This can happen if the transcription-terminator stem is organized by involving base pairing with the ribosome binding site. This collection of mechanisms would permit freshly start mRNA transcripts to be terminated by the terminator stem, whereas transcripts whose formation had already authorized the point of transcription termination could feat the same structural change to stop translation by jamming the ribosome-binding site. Further observational experiments are needed to be try out whether this collection of mechanisms is surely employed by some riboswitches. STRATEGY FOR THE BIOINFORMATICS ANALYSIS OF KNOWN RIBOSWITCH CLASSES Riboswitches are generally utilized by bacteria in order to
Recommended publications
  • Crystal Structures of the Thi-Box Riboswitch Bound to Thiamine Pyrophosphate Analogs Reveal Adaptive RNA-Small Molecule Recognition
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure 14, 1459–1468, September 2006 ª2006 Elsevier Ltd All rights reserved DOI 10.1016/j.str.2006.07.008 Crystal Structures of the Thi-Box Riboswitch Bound to Thiamine Pyrophosphate Analogs Reveal Adaptive RNA-Small Molecule Recognition Thomas E. Edwards1 and Adrian R. Ferre´-D’Amare´ 1,* are highly conserved elements, whereas the expression 1 Division of Basic Sciences platforms are variable. Initial structural and biophysical Fred Hutchinson Cancer Research Center studies of riboswitches have focused on aptamer do- 1100 Fairview Avenue North mains (Batey, 2006; Batey et al., 2004; Serganov et al., Seattle, Washington 98109 2004). The thiamine pyrophosphate-sensing riboswitch, or ‘‘thi-box’’ RNA (Miranda-Rios et al., 2001), was one of Summary the earliest discovered riboswitches (Mironov et al., 2002; Winkler et al., 2002). The thi-box is currently the Riboswitches are noncoding mRNA elements that most widespread known riboswitch, with hundreds of bind small-molecule metabolites with high affinity examples found across phylogeny from bacteria to and specificity, and they regulate the expression of archaea to fungi (Griffiths-Jones et al., 2005; Rodionov associated genes. The thi-box riboswitch can exhibit et al., 2002; Sudarsan et al., 2003). Like other ribo- a 1000-fold higher affinity for thiamine pyrophosphate switches, the thi-box binds to its cognate metabolite over closely related noncognate compounds such as with high affinity and specificity (Winkler et al., 2002). thiamine monophosphate. To understand the chemical Although the actual affinity varies between different basis of thi-box pyrophosphate specificity, we have de- thi-box RNAs, some thi-box RNAs can bind to thiamine termined crystal structures of an E.
    [Show full text]
  • Thiamine Biosynthesis in Algae Is Regulated by Riboswitches
    Thiamine biosynthesis in algae is regulated by riboswitches Martin T. Croft, Michael Moulin, Michael E. Webb*, and Alison G. Smith† Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved November 7, 2007 (received for review June 20, 2007) In bacteria, many genes involved in the biosynthesis of cofactors Volvox carteri (9, 10), to discover TPP riboswitches in these such as thiamine pyrophosphate (TPP) are regulated by ribo- organisms by sequence comparison. We characterize the func- switches, regions in the 5؅ end of mRNAs to which the cofactor tion of these riboswitches in vivo, thereby enabling their role in binds, thereby affecting translation and/or transcription. TPP ri- the regulation of thiamine biosynthesis to be established. By boswitches have now been identified in fungi, in which they alter using the same comparative approach, we have also identified mRNA splicing. Here, we show that addition of thiamine to cultures possible TPP riboswitches in other photosynthetic eukaryotes. of the model green alga Chlamydomonas reinhardtii alters splicing of transcripts for the THI4 and THIC genes, encoding the first Results enzymes of the thiazole and pyrimidine branches of thiamine Identification of Riboswitch Sequences in C. reinhardtii and V. carteri. biosynthesis, respectively, concomitant with an increase in intra- Within the genes of C. reinhardtii and V. carteri, exons usually cellular thiamine and TPP levels. Comparison with Volvox carteri,a show a high degree of sequence similarity, but the introns are related alga, revealed highly conserved regions within introns of much less well conserved.
    [Show full text]
  • RNA 3D Structure Prediction Guided by Independent Folding of Homologous Sequences Marcin Magnus1* , Kalli Kappel2, Rhiju Das2,3,4* and Janusz M
    Magnus et al. BMC Bioinformatics (2019) 20:512 https://doi.org/10.1186/s12859-019-3120-y RESEARCH ARTICLE Open Access RNA 3D structure prediction guided by independent folding of homologous sequences Marcin Magnus1* , Kalli Kappel2, Rhiju Das2,3,4* and Janusz M. Bujnicki1,5 Abstract Background: The understanding of the importance of RNA has dramatically changed over recent years. As in the case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined by the molecule’s sequence. The prediction of tertiary structures of complex RNAs is still a challenging task. Results: Using the observation that RNA sequences from the same RNA family fold into conserved structure, we test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction. EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and SimRNA are carried out. The model of the target sequence is selected based on the most common structural arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular homologs were unusually amenable to structure recovery in folding simulations compared to the single original target sequence. Conclusion: This work, for the first time to our knowledge, demonstrates the importance of the selection of the target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction.
    [Show full text]
  • RNA Regulatory Elements Play a Significant Role in Gene
    Ab initio IDENTIFICATION OF REGULATORY RNAS USING INFORMATION-THEORETIC UNCERTAINTY by AMIRHOSSEIN MANZOUROLAJDAD (Under the Direction of Dr. Jonathan Arnold) ABSTRACT RNA regulatory elements play a significant role in gene regulation. Riboswitches are regulatory elements which function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Traditionally, riboswitches have been identified based on sequence and structural homology. In this work, in an attempt to devise an ab initio method for identification of regulatory elements, mainly riboswitches, we derive and implement Shannon’s entropy of the SCFG ensemble on an RNA sequence in polynomial time for both structurally ambiguous and unambiguous grammars. We then evaluate the significance of this new measure of structural entropy in identifying riboswitches. Finally, sim- ple lightweight stochastic context-free grammar folding models assign significant values to long extensive secondary structures in Bacillus subtilis. INDEX WORDS: Riboswitch, RNA Secondary Structure, Stochastic Context-free Grammars, Information Theory Ab initio IDENTIFICATION OF REGULATORY RNAS USING INFORMATION-THEORETIC UNCERTAINTY by AMIRHOSSEIN MANZOUROLAJDAD BS, The University of Guilan, Rasht, Iran, 2004 MS, Isfahan University of Technology, Isfahan, Iran, 2007 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS,GEORGIA 2014 ⃝c 2014 Amirhossein Manzourolajdad All Rights Reserved Ab initio IDENTIFICATION OF REGULATORY RNAS USING INFORMATION-THEORETIC UNCERTAINTY by AMIRHOSSEIN MANZOUROLAJDAD Approved: Major Professor: Jonathan Arnold Committee: Sidney Kushner Russell L. Malmberg Jan Mrazek Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2014 I dedicate this work to my mother, Roya iv ACKNOWLEGEMENTS I will be eternally indebted to my major advisor Dr.
    [Show full text]
  • Secondary Structural Entropy in RNA Switch (Riboswitch) Identification Amirhossein Manzourolajdad1,2* and Jonathan Arnold1,3
    Manzourolajdad and Arnold BMC Bioinformatics (2015) 16:133 DOI 10.1186/s12859-015-0523-2 METHODOLOGY ARTICLE Open Access Secondary structural entropy in RNA switch (Riboswitch) identification Amirhossein Manzourolajdad1,2* and Jonathan Arnold1,3 *Correspondence: [email protected] Abstract 1 Institute of Bioinformatics, Background: RNA regulatory elements play a significant role in gene regulation. University of Georgia, Davison Life Sciences Bldg, Room B118B, 120 Riboswitches, a widespread group of regulatory RNAs, are vital components of many Green St, 30602 Athens, USA bacterial genomes. These regulatory elements generally function by forming a 2 National Center for Biotechnology ligand-induced alternative fold that controls access to ribosome binding sites or other Information (NCBI), NIH, Building 38A, RM 6S614K, 8600 Rockville regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across Pike, 20894 Bethesda, USA bacterial genomes. A typical class of riboswitch has its own unique structural and Full list of author information is available at the end of the article biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. Results: We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models.
    [Show full text]
  • Comparative Genomics of Metabolic Capacities of Regulons Controlled by Cis-Regulatory RNA Motifs in Bacteria
    UC San Diego UC San Diego Previously Published Works Title Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria Permalink https://escholarship.org/uc/item/9hf0n826 Journal BMC Genomics, 14(1) Authors Sun, EI Leyn, SA Kazanov, MD et al. Publication Date 2013-09-02 DOI 10.1186/1471-2164-14-597 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Sun et al. BMC Genomics 2013, 14:597 http://www.biomedcentral.com/1471-2164/14/597 RESEARCH ARTICLE Open Access Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria Eric I Sun1, Semen A Leyn2,3, Marat D Kazanov3, Milton H Saier Jr.1, Pavel S Novichkov4 and Dmitry A Rodionov2,3* Abstract Background: In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels. An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. Results: A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories.
    [Show full text]
  • Structural and Mechanistic Studies of the THI Box and SMK Box Riboswitches
    Structural and Mechanistic Studies of the THI Box and SMK Box Riboswitches Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela Mae Smith, M.S. Graduate Program in Microbiology The Ohio State University 2009 Dissertation Committee: Professor Tina Henkin, Advisor Professor Kurt Fredrick Professor Michael Ibba Professor Ross Dalbey ABSTRACT Organisms have evolved a variety of mechanisms for regulating gene expression. Expression of individual genes is carefully modulated during different stages of cell development and in response to changing environmental conditions. A number of regulatory mechanisms involve structural elements within messenger RNAs (mRNAs) that, in response to an environmental signal, undergo a conformational change that affects expression of a gene encoded on that mRNA. RNA elements of this type that operate independently of proteins or translating ribosomes are termed riboswitches. In this work, the THI box and SMK box riboswitches were investigated in order to gain insight into the structural basis for ligand recognition and the mechanism of regulation employed by each of these RNAs. Both riboswitches are predicted to regulate at the level of translation initiation using a mechanism in which the Shine-Dalgarno (SD) sequence is occluded in response to ligand binding. For the THI box riboswitch, the studies presented here demonstrated that 30S ribosomal subunit binding at the SD region decreases in the presence of thiamin pyrophosphate (TPP). Mutation of conserved residues in the ligand binding domain resulted in loss of TPP-dependent repression in vivo. Based on these experiments two classes of mutant phenotypes were identified.
    [Show full text]
  • Riboswitch-Dependent Gene Regulation and Its Evolution in the Plant Kingdom
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION related compounds (Sudarsan et al. 2005). In prokaryotes, Riboswitch-dependent gene genetic control mediated by riboswitches is a prevalent regulation and its evolution phenomenon, and the dozen riboswitches identified to date regulate >3% of all bacterial genes (Nudler 2006). in the plant kingdom Thiamin pyrophosphate (TPP) is a coenzyme derived from vitamin B1 (thiamin) that is synthesized by bacte- 1,2 1 1 Samuel Bocobza, Avital Adato, Tali Mandel, ria, fungi, and plants, and serves as a dietary requirement Michal Shapira,2 Evgeny Nudler,3 and for humans and other animals. It is an obligatory cofac- Asaph Aharoni1,4 tor that plays an important role in amino acid and car- bohydrate metabolism; thus, fine control of its levels is 1Department of Plant Sciences, Weizmann Institute of essential for the viability of all living cells. TPP-binding Science, Rehovot 76100, Israel; 2Department of Life Sciences, riboswitches, first identified in Bacillus subtilis and Ben Gurion University, Beer Sheva 84105, Israel; 3Department Escherichia coli (Mironov et al. 2002; Winkler et al. of Biochemistry, New York University School of Medicine, 2002), exist in the genomes of species belonging to most New York, New York 10016, USA bacterial phyla (Rodionov et al. 2002). Binding of TPP by the riboswitch down-regulates expression of thiamin Riboswitches are natural RNA sensors that affect gene biosynthesis genes by inducing either the formation of a control via their capacity to bind small molecules. Their transcription terminator hairpin or the formation of a prevalence in higher eukaryotes is unclear.
    [Show full text]
  • Identification of Cyanobacterial Non-Coding Rnas by Comparative
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MPG.PuRe Open Access Research2005AxmannetVolume al. 6, Issue 9, Article R73 Identification of cyanobacterial non-coding RNAs by comparative comment genome analysis Ilka M Axmann¤*, Philip Kensche¤*†, Jörg Vogel‡, Stefan Kohl*, Hanspeter Herzel† and Wolfgang R Hess*§ Addresses: *Humboldt-University, Department of Biology/Genetics, Chausseestrasse, D-Berlin, Germany. †Humboldt-University, Institute for Theoretical Biology, Invalidenstrasse, Berlin, Germany. ‡Max Planck Institute for Infection Biology, Schumannstrasse, Berlin, Germany. § University Freiburg, Institute of Biology II/Experimental Bioinformatics, Schänzlestrasse, Freiburg, Germany. reviews ¤ These authors contributed equally to this work. Correspondence: Wolfgang R Hess. E-mail: [email protected] Published: 17 August 2005 Received: 30 March 2005 Revised: 1 June 2005 Genome Biology 2005, 6:R73 (doi:10.1186/gb-2005-6-9-r73) Accepted: 20 July 2005 reports The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/9/R73 © 2005 Axmann et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Identification<p>Thepredictednetic distribution.</p> first and genome-wide oftheir cyanobacterial presence and was systematicnon-coding biochemically screen RNAs verified. for non-coding These ncRN RNAsAs (ncRNAs) may have inregulatory cyanobacteria. functions, Several and ncRNAs each shows were a computationaldistinct phyloge-ly deposited research Abstract Background: Whole genome sequencing of marine cyanobacteria has revealed an unprecedented degree of genomic variation and streamlining.
    [Show full text]
  • University of Dundee Discovery and Profiling of Small Rnas Responsive
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum Kwenda, Stanford; Gorshkov, Vladimir; Ramesh, Aadi Moolam; Naidoo, Sanushka; Rubagotti, Enrico; Birch, Paul R J; Moleleki, Lucy N. Published in: BMC Genomics DOI: 10.1186/s12864-016-2376-0 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Kwenda, S., Gorshkov, V., Ramesh, A. M., Naidoo, S., Rubagotti, E., Birch, P. R. J., & Moleleki, L. N. (2016). Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genomics, 17, [47]. DOI: 10.1186/s12864-016-2376-0 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • The RNA World New Discoveries Reflecting Ancient Biology
    The RNA World New Discoveries Reflecting Ancient Biology Ronald R. Breaker Yale University Howard Hughes Medical Institute 5 March 2014; CAPS Tree of Life RNA World You are here 2 Why RNA? Biological Information RNA Replication and Transfer 3 Origins of the RNA World Theory Carl Woese (1967) The Genetic Code, Harper and Row Leslie Orgel (1968) Evolution of the Genetic Apparatus J. Mol. Biol. 38:381 Francis Crick (1968) The Origin of the Genetic Code J. Mol. Biol. 38:367 4 ● DNA monomers are made from RNA monomers. ● Most coenzymes are derivatives of RNA. ● Information transfer from DNA to proteins intimately involves RNA. ● RNA-based sensors and switches exist (riboswitches). ● RNA naturally stores genetic information and catalyzes chemical reactions (ribozymes). ● All encoded proteins are made by ribozymes. ● Ancient structured noncoding RNAs could have allowed RNA World organisms to run a complex metabolic state. ● Many structured noncoding RNAs might exist in modern cells and are awaiting discovery. Riboswitches Natural RNA Elements that Bind Metabolites and Control Gene Expression The Typical Architecture of Riboswitches in Bacteria TPP Riboswitches Present in All Three Domains of Life McCown, P.J., Breaker, R.R., unpublished The Moving Parts of Riboswitches Aptamers and Expression Platforms The two most common mechanisms of riboswitch gene control in eubacteria. Transcription Control Translation Control A stealth form of transcription control? The Diversity and Distribution of Riboswitches Data derived from the analysis of ~10,000
    [Show full text]
  • Thiamine Pyrophosphate Riboswitches in Bacteroides Species Regulate Transcription Or
    bioRxiv preprint doi: https://doi.org/10.1101/867226; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thiamine pyrophosphate riboswitches in Bacteroides species regulate transcription or 2 translation of thiamine transport and biosynthesis genes 3 4 Zachary A. Costliowa,*,$, Patrick H. Degnanb,%, and Carin K. Vanderpoola,$ 5 6 aDepartment of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 7 bDepartment of Microbiology and Plant Pathology, University of California-Riverside, Riverside, 8 California, USA 9 *Present address: Broad Institute, Cambridge, Massachusetts, 02142 10 11 Short title: Regulation by TPP Riboswitches in Bacteroides 12 13 $Address correspondence to Zachary A. Costliow, [email protected], or Carin K. 14 Vanderpool, [email protected] 15 16 RNA-seq data generated for this project have been submitted to the NCBI SRA database as 17 study SRP148918. 1 bioRxiv preprint doi: https://doi.org/10.1101/867226; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 18 Abstract 19 Thiamine (vitamin B1) and its phosphorylated precursors are necessary for 20 decarboxylation reactions required in carbohydrate and branched chain amino acid metabolism. 21 Due to its critical roles in central metabolism, thiamine is essential for human and animal hosts 22 and their resident gut microbes.
    [Show full text]