July20,2001;rev.August16,2001

GeneralCovariance,GaugeTheoriesandtheKretschmann

Objection.

Submittedto inPhysics:NewReflections,

KatherineBradingandElenaCastellani(eds),inpreparation.

JohnD.Norton 1

DepartmentofHistoryandPhilosophyofScience

UniversityofPittsburgh,PittsburghPAUSA15260

[email protected]

Howcanwereconciletwoclaimsthatarenowbothwidelyaccepted:

Kretschmann'sclaimthatarequirementofgeneralcovarianceisphysically

vacuousandthestandardviewthatthegeneralcovarianceofgeneralrelativity

expressesthephysicallyimportantdiffeomorphismgaugefreedomofgeneral

relativity?Iurgethatbothclaimscanbeheldwithoutcontradictionifweattend

tothecontextinwhicheachismade.

1IthankCarloRovelli,JohnEarman,ElenaCastellaniandChrisMartinfortheirdiscussion andforforcingmetothinkthisthrough.Iamalsogratefulfordiscussionbytheparticipants inthe"InternationalWorkshop:GeneralCovarianceandQuantum?:WhereDoWeStand,"

DepartmentofPhysics,UniversityofParma,June21-23,2001,organizedbyMassimoPauri.

1 1.Introduction

Twoviews…

WhenEinsteinformulatedhisgeneraltheoryofrelativity,hepresenteditasthe culminationofhissearchforagenerallycovarianttheory.Thatthiswasthesignal achievementofthetheoryrapidlybecametheorthodoxconception.Adissidentview, however,tracingbackatleasttoobjectionsraisedbyErichKretschmannin1917,holdsthat thereisnophysicalcontentinEinstein'sdemandforgeneralcovariance.Thatdissidentview hasgrownintothemainstream.Manyaccountsofgeneralrelativitynolongerevenmention aprincipleorrequirementofgeneralcovariance.

Whatisunsettlingforthisshiftinopinionisthenewercharacterizationofasagaugetheoryof,withgeneralcovarianceexpressingagauge freedom.Therecognitionofthisgaugefreedomhasprovencentraltothephysical interpretationofthetheory.Thatfreedomprecludescertainotherwisenaturalsortsof background;itcomplicatesidentificationofthetheory'sobservables,sincethey mustbegauge;anditisnowrecognizedaspresentingspecialproblemsforthe projectof quantizingofgravitation.

…ThatWeNeednotChooseBetween

Itwouldseemunavoidablethatwecanchooseatmost oneofthesetwoviews:the vacuityofarequirementofgeneralcovarianceorthecentralimportanceofgeneral covarianceasagaugefreedomofgeneralrelativity.Iwillurgeherethatthisisnotso;we maychoose both,oncewerecognizethedifferingcontextsinwhichtheyarise.Kretschmann's claimofvacuityariseswhenwehavesomebodyofphysicalfacttorepresentandweare givenfreereignindevisingtheformalismthatwillcaptureit.Heurges,correctlyIbelieve, thatwewillalwayssucceedinfindingagenerallycovariantformulation.Nowtakea differentcontext.Thetheory—generalrelativity—isfixedbothinitsformalismandphysical

2 interpretation.Eachformalpropertyofthetheorywillhavesomemeaning.Thatholdsforits generalcovariancewhichturnsouttoexpressanimportantgaugefreedom.

ToCome

InSection4Iwilllayoutthisreconciliationingreaterdetail.Aspreparation,in

Sections2and3,Iwillbrieflyreviewthetwoviewpoints.FinallyinSection5Iwillrelatethe reconciliationtothefertile"gaugeprinciple"usedinrecentparticlephysics.AnAppendix discussesthedifficultyofmakinggoodonKretschmann'sclaimthatgenerallycovariant reformulationsarepossibleforanytheory.

2.EinsteinandKretschmann'sObjection

Einstein…

InNovember1915anexhaustedandexhilaratedEinsteinpresentedthe gravitationalfieldequationsofhisgeneraltheoryofrelativitytothePrussianAcademyof

Science.Theseequationsweregenerallycovariant;theyretainedtheirformunderarbitrary transformationofthespacetimecoordinatesystem.Thiseventmarkedtheendofaseven yearquest,withthefinalthreeyearsofgreatestintensity,asEinsteinstruggledtoseethata generallycovarianttheorywasphysicallyadmissible. 2

Einsteinhadseveralbasesforgeneralcovariance.Hebelievedthatthegeneral covarianceofhistheoryembodiedanextensionoftheprincipleofrelativitytoacceleration.

ThisconclusionseemedautomatictoEinstein,justastheLorentzcovarianceofhis1905 formulationofspecialrelativityexpresseditssatisfactionoftheprincipleofrelativityof

2Overthelasttwodecadestherehasbeenextensivehistoricalworkonthisepisode.Earlier worksincludeStachel(1980)andNorton(1984);thedefinitiveworkwillbe Rennetal.(in preparation).

3 inertialmotion. 3Healsoadvancedwhatwenowcallthe"point-coincidence"argument.The physicalcontentofatheoryisexhaustedbyacatalogofcoincidences,suchasthecoincidence ofapointerwithascale,or,iftheworldconsistedofnothingbutparticlesinmotion,the meetingsoftheirworldlines.Thesecoincidencesarepreservedunderarbitrarycoordinate transformations;allwedointhetransformationsis relabelthespacetimecoordinates assignedtoeachcoincidence.Thereforeaphysicaltheoryshouldbegenerallycovariant.Any lesscovariancerestrictsourfreedomto relabelthespacetimecoordinatesofthecoincidences andthatrestrictioncanbebasedinnophysicalfact.

…andKretschmann

Shortlyafter,ErichKretschmann(1917)announcedthatEinsteinhadprofoundly mistakenthecharacterofhisachievement.Indemandinggeneralcovariance,Kretschmann asserted,Einsteinhadplacednoconstraintonthephysicalcontentofhistheory.Hehad merelychallengedhismathematicalingenuity.For,Kretschmannurged,anyspacetime theorycouldbegivenagenerallycovariantformulationaslongaswearepreparedtoput sufficientenergyintothetaskofreformulatingit.Inarrivingatgeneralrelativity,Einstein hadusedthe"absolutedifferentialcalculus"ofRicciandLevi-Civita(nowcalled"tensor calculus.")Kretschmannpointedtothiscalculusasatoolthatmadethetaskoffinding generallycovariantformulationsoftheoriestractable. 4

Kretschmann'sargumentwasslightlymoresubtlethantheaboveremarks.

KretschmannactuallyembracedEinstein'spoint-coincidenceargumentandturnedittohis ownends.Inhisobjection,heagreedthatthephysicalcontentofspacetimetheoriesis

3Theanalogyproveddifficulttosustainandhasbeenthesubjectofextensivedebate.See

Norton(1993).

4ForfurtherdiscussionofKretschmann'sobjection,Einstein'sresponseandofthestillactive debatethatfollows,seeNorton(1993)and Rynasiewicz(1999)

4 exhaustedbythecatalogofspacetimecoincidences;thisisnopeculiarityofgeneral relativity.Forthisveryreasonallspacetimetheoriescanbegivengenerallycovariant formulations.5

Kretschmann'sobjectiondoe sseemsustainable.Forexample,usingRicciandLevi-

Civita'smethodsitisquiteeasytogivespecialrelativityagenerallycovariantformulation.

InitsstandardLorentzcovariantformulation,usingthestandardspacetimecoordinates(t, x,y,z),specialrelativityisthetheoryofaMinkowskispacetimewhosegeometryisgivenby theinvariantlineelement

ds2=c2dt2-dx2-dy2-dz2(1)

Freefalltrajectories(andother"straights"ofthegeometry)aregivenby

d2x/dt2=d2y/dt2=d2z/dt2=0(2)

Weintroducearbitraryspacetimecoordinatesx i,fori=0,…,3andtheinvariantlineelement becomes

2 i k ds =gikdx dx (3a) wherethematrixofcoefficientsg ikissubjecttoafieldequation

Riklm=0(3a) withRiklmtheRiemann-Christoffelcurvaturetensor.Thefreefallsarenowgovernedby

2 i 2 i k m d x /ds +{k m}dx /dsdx /ds=0(4)

i where{k m}aretheChristoffelsymbolsofthesecondkind.

5Rhetorically,Kretschmann'sargumentwasbrilliant.Todenyit,Einsteinmayneedtodeny hisownpoint-coincidenceargument.HoweverapersistentambiguityremainsinEinstein's originalargument.Justwhatisapoint-coincidence?Einsteingivesnogeneraldefinition.He givesonlyalistofillustrationsandmanypitfallsawaitthosewhowanttomakethe argumentmoreprecise.Forexample,seeHoward(1999).

5 ExamplessuchasthissuggestthatKretschmannwasrighttourgethatgenerally covariantreformulationsarepossibleforallspacetimetheories.Whilethesuggestionis plausibleitiscertainlynotprovenbytheexamplesandanyfinaldecisionmustawait clarificationofsomeambiguities.SeeAppendix1:IsaGenerallyCovariantReformulation

AlwaysPossible?forfurtherdiscussion.

3.TheGaugeFreedomofGeneralRelativity

ActiveGeneralCovariance

Einsteinspokeofgeneralcovarianceastheinvarianceofformofatheory'sequations whenthespacetimecoordinatesaretransformed.Itisusuallycoupledwithaso-called

"passive"readingofgeneralcovariance:ifwehavesomesystemoffields,wecanchangeour spacetimecoordinatesystemaswepleaseandthenewdescriptionsofthefieldsinthenew coordinatesystemswillstillsolvethetheory'sequations.Einstein'sforminvarianceofthe theory'sequationsalsolicensesasecondversion,theso-called"active"generalcovariance.It involvesnotransformationofthespacetimecoordinatesystem.Ratheractivegeneral covariancelicensesthegenerationofmanynewsolutionsoftheequationsofthetheory inthe samecoordinatesystemonceonesolutionhasbeengiven.

Forexample,assumetheequationsofsomegenerallycovarianttheoryadmitascalar

i field ϕ(x )asasolution.Thengeneralcovarianceallowsustogeneratearbitrarilymanymore solutionsby,metaphoricallyspeaking,spreadingthescalarfielddifferentlyoverthe spacetimemanifoldofevents.Weneedasmoothmappingontheevents—a diffeomorphism—toeffecttheredistribution.Forexample,assumewehavesuchamapthat sendstheeventatcoordinatex itotheeventatcoordinatex' iinthesamecoordinatesystem.

Suchamapmightbeauniformdoubling,sothatx iismappedtox' i=2.xi.Todefinethe

i redistributedfield ϕ',weassigntotheeventatx' thevalueoftheoriginalfield ϕattheevent

6 withcoordinatex i.6Ifthefieldisnotascalarfield,thetransformationruleisslightlymore complicated.Forfurtherdetailsofthescalarcase,seeAppendix2:FromPassivetoActive

Covariance.

WhyitisaGaugeFreedom

i i Thefields ϕ(x )andϕ'(x )aremathematicallydistinct.Butdotheyrepresent physicallydistinctfields?Thestandardviewistoassumethattheydonot,sothattheyare relatedbyagaugetransformation,thatis,onethatrelatesmathematicallydistinct representationsofthesamephysicalreality.Thatthisissocannotbedecidedpurelybythe mathematics.Itisamatterofphysicsandmustbesettledbyphysicalargumentation.

AvividwaytolayoutthephysicalargumentsisthroughEinstein's"hole argument."7Thetransformationonthemanifoldofeventscanbesetupsothatitisthe identityeverywhereoutsidesomenominatedneighborhoodofspacetime("thehole")and comessmoothlytodifferwithin.Wenowusethetransformationtoduplicate diffeomorphicallyallthefieldsofsomegenerallycovarianttheory.Dothenewfields representthesamephysicalrealityastheold?Itwouldbeveryoddiftheydidnot.Both systemsoffieldsagreecompletelyinallinvariants;theyarejustspreaddifferentlyonthe manifold.Sinceobservablesaregivenbyinvariants,theyagreeineverythingobservable.

Moreover,thetwosystemsoffieldwillagreeeverywhereoutsidethehole,buttheydiffer onlywithin.Thismeansthat,inagenerallycovarianttheory,fixingallfieldsoutsidethis neighborfailstofixthefieldswithin.Thisisaviolationofdeterminism.Inshort,ifwe assumethetwosystemsoffieldsdifferinsomephysicalwaywemustinsistuponadifference

6Tovisualizethisredistributioninthetwodimensionalcase,imaginethattheoriginalfield isrepresentedbynumberswrittenonaflatrubbermembrane.Ifwenowuniformlystretch therubbermembranesoitdoublesinsize,wehavethenewfield.

7SeeEarmanandNorton(1987),Norton(1999).

7 thattranscendsbothobservationandthedeterminingpowerofthetheory.Theready solutionisthatthesedifferencesarepurelyonesofmathematicalrepresentationandthat thetwosystemsoffieldsrepresentthesamephysicalreality.

ItsPhysicalConsequences

Acceptingthatthisgaugefreedomhasimportantconsequencesforthephysical interpretationofatheorysuchasgeneralrelativity. 8Thetheoryisdevelopedbypositinga manifoldofspacetimeeventswhichisthenendowedwithmetricpropertiesbymeansofa metrictensorfieldg ik.Thenaturaldefaultistotakethemanifoldofeventsassupplying somekindofindependentbackgroundspacetimeinwhichphysicalprocessescanunfold.The gaugefreedommakesitverydifficulttoretainthisview.For,whenweapplya diffeomorphismtothefieldandspreadthemetricalpropertiesdifferentlyoverevents,the transformationispurelygaugeandweendupchangingnothingphysical.Sonowthesame eventsareendowedwithdifferentproperties,yetnothingphysicalhaschanged.Thesimplest andperhapsonlywaytomakesenseofthisistogiveuptheideaofanindependentexistence oftheeventsofthemanifold.Insofaraswecanassociateaneventofthemanifoldwithreal eventsintheworld,thatassociationmustchangeinconcertwithourredistributionofthe metricalfieldoverthemanifold.

Ournotionofwhatisobservableisaffectedbysimilarconsiderations.Whatis observableisasubsetofthephysicallyrealandthatinturnisexpressedbytheinvariantsof atheory.Mightanobservableresultconsistoftheassertionthataninvariantofsomefield hassuchandsuchavalueatsomeeventofthemanifold?No.Theinvariancemustalso includeinvarianceunderthegaugetransformationandtheassertionwouldfailtobe invariantunderthegaugetransformation.Inredistributingthefields,thetransformation

8Forfurtherdiscussionoftheseandrelatedissuesandtheirimportforthequantizationof seeRovelli(1997).

8 mightrelocatethatinvariantwiththatvalueatquiteanothereventofthemanifold.Ifsome resultiseradicatedbyagaugetransformation,itcannothavebeenaresultexpressing physicalfactsincethegaugetransformationaltersnothingphysical.Wemustresorttomore refinedwaysofrepresentingobservables.Forexample,theymaybeexpressedbyan assertionthattwoinvariantsareequal.Theeventatwhichtheequalityresidedmayvary undergaugetransformation;butthetransformationwillpreservetheequalityasserted.

4.Reconciliation

TheContextinwhichKretschmann'sObjectionSucceeds

Kretschmann'sobjections ucceedsbecauseheallowsuseveryfreedomin reformulatingandreinterpretingtermswithinatheory.ThusweeasilytransformedfromitsLorentzcovariantformulation(1),(2)toagenerallycovariantformulation

(3a),(3b),(4).Indoingso,weintroducednewvariablesnotoriginallypresent.Thearethe

i coefficientsofthemetrictensorg ikandtheChristoffelsymbols{ k m}.

Withthisamountoffreedom,itisplausiblethatwecanarriveatformulationsofany theorythathaveanydesignatedformalproperty. 9Imagine,forexample,thatwewanteda

9Iamdistinguishingtheformalismofthetheory(anditsformalproperties)fromits interpretation.Theformalismofatheorywouldbetheactualwordsused,ifthetheory consistedofanEnglishlanguagedescription,independentlyoftheirmeanings.Formal propertieswouldincludesuchthingsasthechoiceofEnglishandthenumberofwords.More commonlyphysicaltheoriesusemathematicalstructuresinplaceofwords.Thesestructures canbeconsideredquiteindependentlyofwhatwetakethemtorepresentintheworld.The propertieswethenconsiderarethepurelyformalproperties.Arealvaluedfieldonsome manifoldisjustamathematicalstructureuntilwespecifywhatitmayrepresentinthe world.Thatspecificationisthejoboftheinterpretation.Seenextfootnote.

9 formulationofNewtonianparticlemechanicsinwhichthestringofsymbols" E=mc2" appears.(Thisisapurelyformalpropertysinceweplacenoconditionsonwhatthestring mightmean.)Hereisonewaywecangenerateit.Wetaketheusualexpressionforthe kineticenergyKofaparticleofmassmmovingatvelocityv,K=(1/2) mv2.Weintroducea newquantityE,definedbyE=2K,andalsoanewlabel"c"forvelocityv,sothat c=v.Once wesubstitutethesenewvariablesintotheexpressionforkineticenergy,ourreformulated theorycontainsthestring" E=mc2".

Thephysicalvacuityarisesbecausewearedemandingtheformalpropertyofgeneral covariance(orsomeotherformalproperty)withoutplacingfurtherrestrictionsthatwould precludeitalwaysbeingachievable.Thevacuitywouldpersistevenifwedemandedafixed physicalcontent;wemustsimplybecarefulnottoalterourinitialphysicalcontentaswe adjustitsformalclothing.Inthecaseofthediscoveryofgeneralrelativity,Einsteindidnot keepthephysicalcontentfixed.Itbecamefullyfixedonlyafterhefoundagenerally covariantformulationthatsatisfiedanumberofrestrictivephysicallimitation.

TheContextinWhichtheDiffeomorphismGaugeFreedomhasPhysicalContent

Mattersarequitedifferentifwefixtheformalismofthetheoryandits interpretation.Sowemightbegivengeneralrelativityinitsstandardinterpretation. 10Ifa theoryhasanycontentatall,wemustbeabletoascribesomephysicalmeaningtoits assertions.Afortioritheremustsomephysicalmeaninginthegeneralcovarianceofgeneral

10By"interpretation"Ijustmeantherulesthattellushowtoconnectthevarioustermsor mathematicalstructuresofthetheorywiththingsinthephysicalworld.Theserulescan varyfromformulationtoformulationsandtheorytotheory.So,inordinaryformulationsof specialrelativity,"c"referstothespeedoflight.Inthermodynamics"c"wouldreferto specificheat.

10 relativity.Itmaybetrivialoritmaynot. 11Consultingthetheory,aswedidinSection2 aboverevealsthatthecontentisnottrivial.

Thingsarejustthesameinourtoyexampleofforcingthestring" E=mc2"intoa formulationofNewtonianparticlemechanics.Letusfixtheformulationtobethedoctored oneabove.Wehadforcedthestring" E=mc2"intoit.Butnowthatwehavedoneit,thestring usessymbolsthathaveameaningand,whenwedecodewhatitsaysaboutthem,we discoverthatthestringexpressessomethingphysical,theoriginalstatementthatkinetic energyishalfmassx(velocity) 2.MimickingKretschmann,wewouldinsistthat,given

Newtonianparticlemechanicsoranyothertheory,somereformulationwiththestringis assuredlypossible;sothedemandforitplacesnorestrictiononthephysicallypossible.But, oncewehavethereformulation,thatstringwillexpresssomething.

Theanalogouscircumstancearisesinthegenerallycovariantreformulationofspecial relativity.Theexistenceofthereformulationisassured.Oncewehaveit,itsgeneral covariancedoesexpresssomething.Inthiscase,itisagaugefreedomofthegeometric structurejustlikethatofgeneralrelativity.TheLorentzcovariantformulationof(1)and(2) admitspreferredcoordinatesystems.Ineffect,someofthephysicalcontentofthetheoryis encodedinthem.Theyspecify,forexample,whicharetheinertialmotions;abodymoves inertiallyonlyifthereisacoordinatesysteminwhichitsspatialcoordinatesdonotchange withthetimecoordinate.Inthetransitiontothegenerallycovariantformulation,this

11Indeedtheassertionmayprovetobealogicaltruth,thatis,itwouldbetruebythe definitionofthetermsitinvokesoritmayamounttothedefinitionofterm.Whiletheirtruth isassured,suchassertionsneednotbetrivial.Forexampleinaformulationofspecial relativitywemayassertthatthatcoefficientsofthemetrictensorarelinearfunctionsofthe coordinates.Thisturnsouttoplacenophysicalrestrictiononthetheory;itmerelyrestricts ustoparticularcoordinatesystems.Itiswhatisknownasacoordinateconditionthat definestherestrictedclassofcoordinatesystemsinwhichtheformulationholds.

11 contentisstrippedoutofthecoordinatesystems.Wecannolongeruseconstancyofspatial coordinatestodiscernwhichpointsmove inertially.Thiscontentisrelocatedinthe

Christoffelsymbols,which,viaequation(4)determinewhetheraparticularmotionis inertial.Thegeneralcovarianceof(3a),(3b)and(4)leaveagaugefreedominhowthemetric

i gikandtheChristoffelsymbols{ k m}maybespreadoversomecoordinatesystem.Inone coordinatesystem,theymaybespreadinmanymathematicallydistinctbutphysically equivalentways.

Tosummarize

Thereisnorestrictiononphysicalcontentinsayingthat thereexistsaformulationofthe theorythathassomeformalproperty(generalcovariance,thepresenceofthestringof symbols"E=mc2",etc.)Butoncewefixa particularformulationandinterpretation,thatvery sameformalpropertywillexpresssomethingphysical,althoughthereisnoassurancethatit willbesomethinginteresting.

5.GaugeTheoriesinParticlePhysics

Thissummarygeneratesanewpuzzle.Oneofthemostfertilestrategiesinrecent decadesinparticlephysicshasbeentoextendthegaugeofnon-interacting particlesandtherebyinfertonewgaugefieldsthatmediatetheinteractionbetweenthe particles.Mostsimply,theelectromagneticfieldcanbegeneratedasthegaugefieldthat mediatesinteractionsofelectrons.Thispowerhasearnedthestrategythelabelofthe"gauge principle."HowcanthisstrategysucceedifKretschmannisrightandthereisnophysical contentinourbeingabletoarriveatareformulationofexpandedcovariance?Intheparticle context,thiscorrespondstoareformulationofexpandedgaugefreedom.Sowhydoesn't

Kretschmann'sobjectionalsotellusthatthestrategyofthegaugeprincipleisphysically vacuous?

12 ThesolutionliesintheessentialantecedentconditionofKretschmann'sobjection.

Thephysicalvacuityarisessincetherearenorestrictionsplacedhowwemightreformulatea theoryinseekinggenerallycovariance.Ithaslongbeenrecognizedthattheassured achievementofgeneralcovariancecanbeblockedbysomesortofadditionalrestrictionon howthereformulationmaybeachieved.Manyadditionalconditionshavebeensuggested, includingdemandsforsimplicityandrestrictionsonwhichextravariablesmayintroduced.

(Forasurvey,seeNorton,1993,Section5;Norton,1995,Section4.)Theanalogoussolution iswhatgivesthegaugeprincipleitscontent.Ingeneratinggaugefields,wearemost definitelynotatlibertytoexpandthegaugefreedomofsomenon-interactingparticlefieldin anywayweplease.Thereisaquitepreciserecipethatmustbefollowed:wemustpromotea globalsymmetryoftheoriginalparticlefieldtoalocalsymmetry,usingtheexemplarofthe electronandtheMaxwellfield,andthenewfieldarisesfromtheconnectionintroducedto preservegaugeequivalence. 12

Thereisconsiderablymorethatshouldbesaidaboutthedetailsoftherecipeandthe wayinwhichnewphysicalcontentarises.Therecipeis standardlypresentedasmerely expandingthegaugefreedomofthenon-interactingparticles,whichshouldmeanthatthe realmofphysicalpossibilityisunaltered;wemerelyhavemoregaugeequivalent representationsofthesamephysicalsituations.Sohowcanphysicallynewparticlefields

12Thetransitionfromspecialrelativityin(1)and(2)tothegenerallycovariantformulation

(3a),(3b)and(4)canbeextendedbyonestep.Wereplacetheflatnesscondition(3a)bya

lm weakercondition,anaturalrelaxation,R ik=g Rilmk=0.Theresultisgeneralrelativityin thesourcefreecase.Arbitrary,sourcefreegravitationalfieldsnowappearinthegeneralized

i connection{ k m}.Wehavewhatamountstotheearliestexampleoftheuseofthegauge recipetogeneratenewfields.Theanalogytomoretraditionalexamplesinparticlephysicsis obvious.

13 emerge?Thisquestioniscurrentlyunderdetailedandprofitablescrutiny.SeeMartin(2000),

(manuscript)andcontributionstothisvolume.

Appendix1:IsaGenerallyCovariantReformulationAlways

Possible?

AsEarman(manuscript,Section3)haspointedout,itisnotentirelyclearwhethera generallycovariantreformationisalwayspossibleforanyspacetimetheory.Theproblemlies inambiguitiesinthequestion.Justwhatcountsas"any"spacetimetheory?Justwhatare weexpectingfromagenerallycovariantreformulation?Letmerehearsesomeofthe difficultiesandsuggestthatformostreasonableanswerstothesequestionsgenerally covariantreformulationwillbepossiblethoughnotnecessarilypretty.

TheSubstitutionTrick…

Letusimaginethatwearegivenaspacetimetheoryinaformulationofrestricted covariance.ItisgiveninjustonespacetimecoordinatesystemsX i.Letusimaginethatthe lawsofthetheoryhappentobegivenbynequationsinthe2nquantitiesA k,Bk

Ak(X i)=Bk(X i)(5) wherek=1,…,nandtheA kandBkarefunctionsofthecoordinatesasindicated.Consider anarbitrarycoordinatesystemx itowhichwetransformbymeansofthetransformationlaw

xi=xi(X m)(6)

Wecanreplacethenequations(5)byequationsthatholdinthearbitrarycoordinatesystem bythesimpleexpedientofinvertingthetransformationof(6)torecovertheexpressionfor theX masafunctionofthex i,thatisX m=X m(xi).SubstitutingtheseexpressionsforX minto

(5),werecoveraversionof(5)thatholdsinthearbitrarycoordinatesystem

Ak(X i(xm))=Bk(X i(xm))(5a)

14 Weseemedtohaveachievedagenerallycovariantreformulationof(5)bythemostdirect applicationoftheintuitionthatcoordinatesystemsaremerelylabelsandwecan relabel spacetimeeventsasweplease.

…YieldsGeometricObjects

While(5a)isgenerallycovariant,wemaynotbehappywiththeformofthegeneral covarianceachieved—oneoftheambiguitiesmentionedabove.Wemight,asEarman

(manuscript,Section3)suggests,wanttodemandthat(5a)beexpressedintermsof geometricobjectfields.Thestandarddefinitionofageometricobjectfieldisthatitisann- tuplevaluedfieldofcomponentsonthemanifold,withonefieldforeachcoordinatesystem, andthatthetransformationrulethatassociatesthecomponentsofdifferentcoordinate systemshavetheusualproperties.

Whilethisdefinitionmayappeardemanding,itturnsouttobesufficiently permissivetocharacterizeeachsideof(5a)asageometricobjectfield.Forexample,ineach coordinatesystemx m,thegeometricobjectfieldAhascomponentsA k(X i(xm)),whichInow writeasAk(xm).Thetransformationrulebetweenthecomponentsisinducedbytherulefor coordinatetransformations.Thatis,underthetransformationx mtoyr(xm),Ak(xm) transformstoA k(xm(yr)),wherexm(yr)istheinverseofthecoordinatetransformation.With thisdefinitionofthetransformationlawforA k,thecomponentswillinheritasmuchgroup structureasthecoordinatetransformationsthemselveshave;thatis,itwillbeasmuchofa geometricobjectfieldaswecandemand. 13Forexample,assumethetransformationsof

13Whythehedged"asmuchgroupstructureasthecoordinatetransformationsthemselves have"?Thesegeneralcoordinatetransformationsmaynothaveallthegrouppropertiesifthe domainsandrangesofthetransformationsdonotmatchupwell.AssumeT 1maps coordinatesx ionaneighborhoodAtocoordinatesy ionaneighborhoodBthatisaproper

i i subsetofAandT 2mapscoordinatesy onBtocoordinatesz onA.Thenthecomposition

15 coordinatesystemsz ptoyrandyrtoxmconformtotransitivity.Thenthissametransitivity willbeinheritedbyA.WewillhaveA k(xm(zp))=A k(xm(yr(zp)))sincethetransitivityofthe coordinatetransformationyieldsx m(zp)=xm(yr(zp)).

ButareTheytheGeometricObjectsWeExpect?

WhilethecomponentsA kturnouttobegeometricobjectfields,theyareprobablynot theonesweexpected.Inbrief,thereasonisthatthetransformationruleinducedbythe substitutiontrickdoesnotallowanymixingofthecomponents.Thatprecludesityielding vectorsortensororlikestructures;itturnseverythingintoscalarfields.Toseehowoddthis is,takeaverysimplecase.Imaginethatwehavespecialrelativityrestrictedtojustone coordinatesystemX i.Ourlawmightbethelawgoverningthemotionofabodyofunitmass,

Fi=A i,whereFiisthefourforceandA ithefouracceleration.UnderaLorentz transformation

0 0 1 1 1 0 3 3 4 4 Y =γ(X –vX )Y =γ(X –vX )Y =X Y =X

1 2 -1/2 withvelocityvintheX direction,c=1and γ=(1-v ) .TheusualLorentztransformationfor thecomponentsA iofthefouraccelerationwouldbe

0 0 1 1 1 0 3 3 4 4 A' =γ(A –vA )A' =γ(A –vA )A' =A A' =A (6)

NotethatthetransformedA' 0andA' 1arelinearsumsoftermsinA 0andA1.Forthissame transformation,thesubstitutiontrickmerelygivesus

A' i=A i(X m(Yr))(6a)

Thatis,A' 0isafunctionofA 0onlyandA' 1isafunctionofA 1only.

Thisodditybecomesadisaste rifweapplythesubstitutionruleinanaturalway.

InsteadofstartingwithAiinonefixedcoordinatesystemX i,wemightstartwillthefullset

i i T2T1cannotcoincidewiththedirecttransformationofx toz sincethecompositionhaslost thatpartofthetransformationoutsideB.

16 ofallcomponentsofA iinallcoordinatesystemsrelatedbyaLorentztransformationtoX i.If wenowtryandmakethisbiggerobjectgenerallycovariantbythesubstitutiontrick,wewill endupwithtwoincompatibletransformationlawsforthetransformationX itoYiwhenwe trytotransformthecomponentsA i—thelaw(6)andlaw(6a).Wenolongerhaveageometric objectfieldsincewenolongerhaveauniquetransformationlawforthecomponents.

Theescapefromthislastproblemistoseparatethetwotransformationgroups.We considerA iincoordinatesystemX iandA' iincoordinatesystemY iseparatelyandconvert themintodistinctgeometricobjectfieldsbythesubstitutiontrick.Asgeometricobjectfields theyhavebecome,ineffect,scalarfields.TheLorentztransformationthenreappearsasa transformationbetweenthesegeometricobjects.

TheCoordinatesasScalarsTrick

Ifthisisourfinalgoal,thenanothergeneraltrickforgeneratinggenerallycovariant reformulationscouldhavegottenustheremuchfaster.WereturntoA k(X i)of(5).Wecan conceivetheX iasscalarfieldsonthemanifold—thatisreallyalltheyare. 14Scalarfieldsare geometricobjectfieldsalready.TheA iarefunctionsofX i,thatis,functionsofscalarfields.

Thereforetheyarealsogeometricobjects.SowecanconceiveoftheentirestructureA k(X i)as ageometricobjectfield.Wehavegottengeneralcovarianceonthecheap.Wecannotavoida costelsewhereinthetheoryhowever.Ourreformulationisoverloadedwithstructure,one geometricobjectfieldforeachofwhatwasoriginallyacomponent.Thereisclearlyfarmore mathematicalstructurepresentthanhasphysicalsignificance.Sothetheorywillneeda carefulsystemfordiscerningjustwhichpartsofallthisstructurehasphysicalsignificance.

14Ask,whatistheX 0coordinateincoordinatesystemX iofsomeeventp?Theanswerwillbe thesamenumberifweaskitfromanyothercoordinatesystemy iaslongaswearecarefulto askitoftheoriginalcoordinatesystemX i.Thatis,eachcoordinatecanbetreatedasascalar field.

17 TemptationsResisted

Thesedevicesforinducinggeneralcovarianc eareclumsybuttheydofallwithinthe fewrulesdiscussed.Wemightbetemptedtodemandthatweonlyadmitgenerallycovariant formulationsiftheirvariouspartsfalltogetherintonicecompactgeometricobjects.Butwhat basisdowehavefordemandingthis?Arewetoprecludethepossibilitythatthetheorywe startedwithisjustacomplicatedmessthatcanonlyadmitanevenmorecomplicatedmess whengivengenerallycovariantreformulations.(Newtoniantheoryhasbeenaccusedofthis!)

Andifwearetodemandonlyniceandelegantreformulations,justhowdowedefine"nice andelegant"?

Myconclusionisthatgenerallycovariantreformulationsarepossibleunderthefew rulesdiscussedandthateffortstoimposefurtherrulestoblockthemoreclumsyoneswill causemoretroublethantheyareworthelsewhere.

Appendix2:FromPassivetoActiveCovariance

Asabove,assumetheequationsofsomegenerallycovarianttheoryadmitascalar

i field ϕ(x )asasolution.Wecantransformtoanewcoordinatesystembymerely relabeling theeventsofspacetime;x iisrelabeledx' i,wherethex'iaresmoothfunctionsofthex i.The

i i i i field ϕ(x )transformstofield ϕ'(x' )bythesimplerule ϕ'(x' )=ϕ(x ).Sincetheequationsofthe

i theoryholdinthenewcoordinatesystem,thenewfield ϕ'(x' )willstillbeasolution.Thetwo

i i fields ϕ(x )andϕ'(x' )arejustrepresentationsofthesamephysicalfieldindifferent spacetimecoordinatesystems.

Thisisthepassiveviewofgeneralcovariance.Itcanbereadilyt ransmogrifiedinto anactiveview,atransitionthatEinsteinhadalreadyundertakenwithhis1914statements

i ofthe"holeargument".Whatmakes ϕ'(x' )asolutionofthetheoryunderdiscussionis

i nothingspecialaboutthecoordinatesystemx' .Itismerelytheparticularfunctionthat ϕ' happenstobe.Itisafunctionthathappenstosatisfytheequationsofthetheory.Wecould

18 takethatverysamefunctionanduseitintheoriginalcoordinatesystem,x i.Thatis,we

i couldformanewfield ϕ'(x ).Sincethisnewfieldusestheverysamefunction,itretainsevery propertyexceptthementionoftheprimedcoordinatesystemx' i.Thusitisalsoasolutionof theequationsofthetheory.

Inshort,thepassivegeneralcovarianceofthetheoryhasdelivered ustwofields,

i i ϕ(x )andϕ'(x ).Theyarenotmerelytworepresentationsofthesamefieldindifferent coordinatesystems.Theyaredefinedinthe samecoordinatesystemandaremathematically distinctfields,insofarastheirvaluesatgiveneventswill(ingeneral)bedifferent.Active

i i i generalcovarianceallowsthegenerationofthefield ϕ'(x )from ϕ(x )bythetransformationx tox'i.

References

Earman,John(manuscript)"OnceMoreGeneralCovariance."

Earman,JohnandNorton,JohnD.(1987):"WhatPriceSpacetimeSubstantivalism?The

HoleArgument," BritishJournalforthePhilosophyofScience.38,pp.515-25.

Howard,Don(1999)"PointCoincidencesandPointerCoincidences:EinsteinontheInvariant

ContentofSpace-TimeTheories,"inH.Goenner,J.Renn,J.Ritter,T.Sauer(eds.)

TheExpandingWorldsofGeneralRelativity(EinsteinStudiesvolume7)pp.463-

500.

Kretschmann,Erich(1917):"ÜberdenphysikalischenSinnderRelativitätspostulat,A

EinsteinsneueundseineursprünglischeRelativitätstheorie," AnnalenderPhysik,

53,575-614.

Martin,Christopher(2000)"TheGaugeArgument,"TalkatthePhilosophyofScience

AssociationBiennialMeeting,Vancouver,2-5,November,2000.

Martin,Christopher(manuscript)Dissertation,DepartmentofHistoryandPhilosophyof

Science,UniversityofPittsburgh.

19 Norton,JohnD.(1984)"HowEinsteinfoundhisFieldEquations:1912-1915," Historical

StudiesinthePhysicalSciences,14,253-316;reprintedinDonHowardandJohn

Stachel(eds.) EinsteinandtheHistoryofGeneralRelativity:EinsteinStudies,Vol.

1Boston:Birkhäuser,1989,pp.101-159.

Norton,JohnD.(1993),"GeneralCovarianceandtheFoundationsofGeneralRelativity:

EightDecadesofDispute," ReportsonProgressinPhysics,56,pp.791-858.

Norton,JohnD.(1995)"DidEinsteinStumble?theDebateOverGeneralCovariance,"

Erkenntnis42,pp.223-45.

Norton,JohnD.(1999)"TheHoleArgument," StanfordEncyclopediaofPhilosophy

http://plato.stanford.edu/entries/spacetime-holearg/

Renn,Jürgen;Sauer,Tilman;Janssen,Michel;Norton,JohnD.andStachelJohn(in

preparation)GeneralRelativityintheMaking;Einstein'sZurichNotebook.

Rovelli,Carlo(1997)"HalfwaythroughtheWoods:ContemporaryResearchonSpaceand

Time,"pp.180-223inJ.EarmanandJ.D.Norton(eds.) TheCosmosofScience:

EssaysofExploration.Pittsburgh:UniversityofPittsburghPress.

Rynasiewicz,Robert(1999)"Kretschmann'sAnalysisofGeneralCovarianceandRelativity

Principles,"inH.Goenner,J.Renn,J.Ritter,T.Sauer(eds.) TheExpanding

WorldsofGeneralRelativity(EinsteinStudiesvolume7)pp.431-462.

Stachel,John(1980):"Einstein'sSearchforGeneralCovariance,"paperreadattheNinth

InternationalConferenceonGeneralRelativityandGravitation,Jena;printedin

DonHowardandJohnStachel(eds.) EinsteinandtheHistoryofGeneralRelativity:

EinsteinStudies,Vol.1(Boston:Birkhäuser,1989)pp.63-100.

20