Irrational Numbers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Irrational Numbers Unit 4 Lesson 6 IRRATIONAL NUMBERS
Irrational Numbers Unit 4 Lesson 6 IRRATIONAL NUMBERS Students will be able to: Understand the meanings of Irrational Numbers Key Vocabulary: • Irrational Numbers • Examples of Rational Numbers and Irrational Numbers • Decimal expansion of Irrational Numbers • Steps for representing Irrational Numbers on number line IRRATIONAL NUMBERS A rational number is a number that can be expressed as a ratio or we can say that written as a fraction. Every whole number is a rational number, because any whole number can be written as a fraction. Numbers that are not rational are called irrational numbers. An Irrational Number is a real number that cannot be written as a simple fraction or we can say cannot be written as a ratio of two integers. The set of real numbers consists of the union of the rational and irrational numbers. If a whole number is not a perfect square, then its square root is irrational. For example, 2 is not a perfect square, and √2 is irrational. EXAMPLES OF RATIONAL NUMBERS AND IRRATIONAL NUMBERS Examples of Rational Number The number 7 is a rational number because it can be written as the 7 fraction . 1 The number 0.1111111….(1 is repeating) is also rational number 1 because it can be written as fraction . 9 EXAMPLES OF RATIONAL NUMBERS AND IRRATIONAL NUMBERS Examples of Irrational Numbers The square root of 2 is an irrational number because it cannot be written as a fraction √2 = 1.4142135…… Pi(휋) is also an irrational number. π = 3.1415926535897932384626433832795 (and more...) 22 The approx. value of = 3.1428571428571.. -
Euler's Square Root Laws for Negative Numbers
Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Complex Numbers Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 Euler's Square Root Laws for Negative Numbers Dave Ruch Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_complex Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Euler’sSquare Root Laws for Negative Numbers David Ruch December 17, 2019 1 Introduction We learn in elementary algebra that the square root product law pa pb = pab (1) · is valid for any positive real numbers a, b. For example, p2 p3 = p6. An important question · for the study of complex variables is this: will this product law be valid when a and b are complex numbers? The great Leonard Euler discussed some aspects of this question in his 1770 book Elements of Algebra, which was written as a textbook [Euler, 1770]. However, some of his statements drew criticism [Martinez, 2007], as we shall see in the next section. 2 Euler’sIntroduction to Imaginary Numbers In the following passage with excerpts from Sections 139—148of Chapter XIII, entitled Of Impossible or Imaginary Quantities, Euler meant the quantity a to be a positive number. 1111111111111111111111111111111111111111 The squares of numbers, negative as well as positive, are always positive. ...To extract the root of a negative number, a great diffi culty arises; since there is no assignable number, the square of which would be a negative quantity. Suppose, for example, that we wished to extract the root of 4; we here require such as number as, when multiplied by itself, would produce 4; now, this number is neither +2 nor 2, because the square both of 2 and of 2 is +4, and not 4. -
Metrical Diophantine Approximation for Quaternions
This is a repository copy of Metrical Diophantine approximation for quaternions. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/90637/ Version: Accepted Version Article: Dodson, Maurice and Everitt, Brent orcid.org/0000-0002-0395-338X (2014) Metrical Diophantine approximation for quaternions. Mathematical Proceedings of the Cambridge Philosophical Society. pp. 513-542. ISSN 1469-8064 https://doi.org/10.1017/S0305004114000462 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Under consideration for publication in Math. Proc. Camb. Phil. Soc. 1 Metrical Diophantine approximation for quaternions By MAURICE DODSON† and BRENT EVERITT‡ Department of Mathematics, University of York, York, YO 10 5DD, UK (Received ; revised) Dedicated to J. W. S. Cassels. Abstract Analogues of the classical theorems of Khintchine, Jarn´ık and Jarn´ık-Besicovitch in the metrical theory of Diophantine approximation are established for quaternions by applying results on the measure of general ‘lim sup’ sets. -
The Geometry of René Descartes
BOOK FIRST The Geometry of René Descartes BOOK I PROBLEMS THE CONSTRUCTION OF WHICH REQUIRES ONLY STRAIGHT LINES AND CIRCLES ANY problem in geometry can easily be reduced to such terms that a knowledge of the lengths of certain straight lines is sufficient for its construction.1 Just as arithmetic consists of only four or five operations, namely, addition, subtraction, multiplication, division and the extraction of roots, which may be considered a kind of division, so in geometry, to find required lines it is merely necessary to add or subtract ther lines; or else, taking one line which I shall call unity in order to relate it as closely as possible to numbers,2 and which can in general be chosen arbitrarily, and having given two other lines, to find a fourth line which shall be to one of the given lines as the other is to unity (which is the same as multiplication) ; or, again, to find a fourth line which is to one of the given lines as unity is to the other (which is equivalent to division) ; or, finally, to find one, two, or several mean proportionals between unity and some other line (which is the same as extracting the square root, cube root, etc., of the given line.3 And I shall not hesitate to introduce these arithmetical terms into geometry, for the sake of greater clearness. For example, let AB be taken as unity, and let it be required to multiply BD by BC. I have only to join the points A and C, and draw DE parallel to CA ; then BE is the product of BD and BC. -
A Quartically Convergent Square Root Algorithm: an Exercise in Forensic Paleo-Mathematics
A Quartically Convergent Square Root Algorithm: An Exercise in Forensic Paleo-Mathematics David H Bailey, Lawrence Berkeley National Lab, USA DHB’s website: http://crd.lbl.gov/~dhbailey! Collaborator: Jonathan M. Borwein, University of Newcastle, Australia 1 A quartically convergent algorithm for Pi: Jon and Peter Borwein’s first “big” result In 1985, Jonathan and Peter Borwein published a “quartically convergent” algorithm for π. “Quartically convergent” means that each iteration approximately quadruples the number of correct digits (provided all iterations are performed with full precision): Set a0 = 6 - sqrt[2], and y0 = sqrt[2] - 1. Then iterate: 1 (1 y4)1/4 y = − − k k+1 1+(1 y4)1/4 − k a = a (1 + y )4 22k+3y (1 + y + y2 ) k+1 k k+1 − k+1 k+1 k+1 Then ak, converge quartically to 1/π. This algorithm, together with the Salamin-Brent scheme, has been employed in numerous computations of π. Both this and the Salamin-Brent scheme are based on the arithmetic-geometric mean and some ideas due to Gauss, but evidently he (nor anyone else until 1976) ever saw the connection to computation. Perhaps no one in the pre-computer age was accustomed to an “iterative” algorithm? Ref: J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity}, John Wiley, New York, 1987. 2 A quartically convergent algorithm for square roots I have found a quartically convergent algorithm for square roots in a little-known manuscript: · To compute the square root of q, let x0 be the initial approximation. -
Unit 2. Powers, Roots and Logarithms
English Maths 4th Year. European Section at Modesto Navarro Secondary School UNIT 2. POWERS, ROOTS AND LOGARITHMS. 1. POWERS. 1.1. DEFINITION. When you multiply two or more numbers, each number is called a factor of the product. When the same factor is repeated, you can use an exponent to simplify your writing. An exponent tells you how many times a number, called the base, is used as a factor. A power is a number that is expressed using exponents. In English: base ………………………………. Exponente ………………………… Other examples: . 52 = 5 al cuadrado = five to the second power or five squared . 53 = 5 al cubo = five to the third power or five cubed . 45 = 4 elevado a la quinta potencia = four (raised) to the fifth power . 1521 = fifteen to the twenty-first . 3322 = thirty-three to the power of twenty-two Exercise 1. Calculate: a) (–2)3 = f) 23 = b) (–3)3 = g) (–1)4 = c) (–5)4 = h) (–5)3 = d) (–10)3 = i) (–10)6 = 3 3 e) (7) = j) (–7) = Exercise: Calculate with the calculator: a) (–6)2 = b) 53 = c) (2)20 = d) (10)8 = e) (–6)12 = For more information, you can visit http://en.wikibooks.org/wiki/Basic_Algebra UNIT 2. Powers, roots and logarithms. 1 English Maths 4th Year. European Section at Modesto Navarro Secondary School 1.2. PROPERTIES OF POWERS. Here are the properties of powers. Pay attention to the last one (section vii, powers with negative exponent) because it is something new for you: i) Multiplication of powers with the same base: E.g.: ii) Division of powers with the same base : E.g.: E.g.: 35 : 34 = 31 = 3 iii) Power of a power: 2 E.g. -
Proofs, Sets, Functions, and More: Fundamentals of Mathematical Reasoning, with Engaging Examples from Algebra, Number Theory, and Analysis
Proofs, Sets, Functions, and More: Fundamentals of Mathematical Reasoning, with Engaging Examples from Algebra, Number Theory, and Analysis Mike Krebs James Pommersheim Anthony Shaheen FOR THE INSTRUCTOR TO READ i For the instructor to read We should put a section in the front of the book that organizes the organization of the book. It would be the instructor section that would have: { flow chart that shows which sections are prereqs for what sections. We can start making this now so we don't have to remember the flow later. { main organization and objects in each chapter { What a Cfu is and how to use it { Why we have the proofcomment formatting and what it is. { Applications sections and what they are { Other things that need to be pointed out. IDEA: Seperate each of the above into subsections that are labeled for ease of reading but not shown in the table of contents in the front of the book. ||||||||| main organization examples: ||||||| || In a course such as this, the student comes in contact with many abstract concepts, such as that of a set, a function, and an equivalence class of an equivalence relation. What is the best way to learn this material. We have come up with several rules that we want to follow in this book. Themes of the book: 1. The book has a few central mathematical objects that are used throughout the book. 2. Each central mathematical object from theme #1 must be a fundamental object in mathematics that appears in many areas of mathematics and its applications. -
Rational Numbers Vs. Irrational Numbers Handout
Rational numbers vs. Irrational numbers by Nabil Nassif, PhD in cooperation with Sophie Moufawad, MS and the assistance of Ghina El Jannoun, MS and Dania Sheaib, MS American University of Beirut, Lebanon An MIT BLOSSOMS Module August, 2012 Rational numbers vs. Irrational numbers “The ultimate Nature of Reality is Numbers” A quote from Pythagoras (570-495 BC) Rational numbers vs. Irrational numbers “Wherever there is number, there is beauty” A quote from Proclus (412-485 AD) Rational numbers vs. Irrational numbers Traditional Clock plus Circumference 1 1 min = of 1 hour 60 Rational numbers vs. Irrational numbers An Electronic Clock plus a Calendar Hour : Minutes : Seconds dd/mm/yyyy 1 1 month = of 1year 12 1 1 day = of 1 year (normally) 365 1 1 hour = of 1 day 24 1 1 min = of 1 hour 60 1 1 sec = of 1 min 60 Rational numbers vs. Irrational numbers TSquares: Use of Pythagoras Theorem Rational numbers vs. Irrational numbers Golden number ϕ and Golden rectangle 1+√5 1 1 √5 Roots of x2 x 1=0are ϕ = and = − − − 2 − ϕ 2 Rational numbers vs. Irrational numbers Golden number ϕ and Inner Golden spiral Drawn with up to 10 golden rectangles Rational numbers vs. Irrational numbers Outer Golden spiral and L. Fibonacci (1175-1250) sequence = 1 , 1 , 2, 3, 5, 8, 13..., fn, ... : fn = fn 1+fn 2,n 3 F { } − − ≥ f1 f2 1 n n 1 1 !"#$ !"#$ fn = (ϕ +( 1) − ) √5 − ϕn Rational numbers vs. Irrational numbers Euler’s Number e 1 1 1 s = 1 + + + =2.6666....66.... 3 1! 2 3! 1 1 1 s = 1 + + + =2.70833333...333... -
The Evolution of Numbers
The Evolution of Numbers Counting Numbers Counting Numbers: {1, 2, 3, …} We use numbers to count: 1, 2, 3, 4, etc You can have "3 friends" A field can have "6 cows" Whole Numbers Whole numbers are the counting numbers plus zero. Whole Numbers: {0, 1, 2, 3, …} Negative Numbers We can count forward: 1, 2, 3, 4, ...... but what if we count backward: 3, 2, 1, 0, ... what happens next? The answer is: negative numbers: {…, -3, -2, -1} A negative number is any number less than zero. Integers If we include the negative numbers with the whole numbers, we have a new set of numbers that are called integers: {…, -3, -2, -1, 0, 1, 2, 3, …} The Integers include zero, the counting numbers, and the negative counting numbers, to make a list of numbers that stretch in either direction indefinitely. Rational Numbers A rational number is a number that can be written as a simple fraction (i.e. as a ratio). 2.5 is rational, because it can be written as the ratio 5/2 7 is rational, because it can be written as the ratio 7/1 0.333... (3 repeating) is also rational, because it can be written as the ratio 1/3 More formally we say: A rational number is a number that can be written in the form p/q where p and q are integers and q is not equal to zero. Example: If p is 3 and q is 2, then: p/q = 3/2 = 1.5 is a rational number Rational Numbers include: all integers all fractions Irrational Numbers An irrational number is a number that cannot be written as a simple fraction. -
The Ordered Distribution of Natural Numbers on the Square Root Spiral
The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution -
Control Number: FD-00133
Math Released Set 2015 Algebra 1 PBA Item #13 Two Real Numbers Defined M44105 Prompt Rubric Task is worth a total of 3 points. M44105 Rubric Score Description 3 Student response includes the following 3 elements. • Reasoning component = 3 points o Correct identification of a as rational and b as irrational o Correct identification that the product is irrational o Correct reasoning used to determine rational and irrational numbers Sample Student Response: A rational number can be written as a ratio. In other words, a number that can be written as a simple fraction. a = 0.444444444444... can be written as 4 . Thus, a is a 9 rational number. All numbers that are not rational are considered irrational. An irrational number can be written as a decimal, but not as a fraction. b = 0.354355435554... cannot be written as a fraction, so it is irrational. The product of an irrational number and a nonzero rational number is always irrational, so the product of a and b is irrational. You can also see it is irrational with my calculations: 4 (.354355435554...)= .15749... 9 .15749... is irrational. 2 Student response includes 2 of the 3 elements. 1 Student response includes 1 of the 3 elements. 0 Student response is incorrect or irrelevant. Anchor Set A1 – A8 A1 Score Point 3 Annotations Anchor Paper 1 Score Point 3 This response receives full credit. The student includes each of the three required elements: • Correct identification of a as rational and b as irrational (The number represented by a is rational . The number represented by b would be irrational). -
WHY a DEDEKIND CUT DOES NOT PRODUCE IRRATIONAL NUMBERS And, Open Intervals Are Not Sets
WHY A DEDEKIND CUT DOES NOT PRODUCE IRRATIONAL NUMBERS And, Open Intervals are not Sets Pravin K. Johri The theory of mathematics claims that the set of real numbers is uncountable while the set of rational numbers is countable. Almost all real numbers are supposed to be irrational but there are few examples of irrational numbers relative to the rational numbers. The reality does not match the theory. Real numbers satisfy the field axioms but the simple arithmetic in these axioms can only result in rational numbers. The Dedekind cut is one of the ways mathematics rationalizes the existence of irrational numbers. Excerpts from the Wikipedia page “Dedekind cut” A Dedekind cut is а method of construction of the real numbers. It is a partition of the rational numbers into two non-empty sets A and B, such that all elements of A are less than all elements of B, and A contains no greatest element. If B has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. The countable partitions of the rational numbers cannot result in uncountable irrational numbers. Moreover, a known irrational number, or any real number for that matter, defines a Dedekind cut but it is not possible to go in the other direction and create a Dedekind cut which then produces an unknown irrational number. 1 Irrational Numbers There is an endless sequence of finite natural numbers 1, 2, 3 … based on the Peano axiom that if n is a natural number then so is n+1.