Solutions in Difluorophosphoric Acid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
Method for Producing Difluorophosphate
(19) TZZ _T (11) EP 2 826 747 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 21.01.2015 Bulletin 2015/04 C01B 25/455 (2006.01) (21) Application number: 12871541.4 (86) International application number: PCT/JP2012/057408 (22) Date of filing: 14.03.2012 (87) International publication number: WO 2013/136533 (19.09.2013 Gazette 2013/38) (84) Designated Contracting States: • SHOGAMI, Kazuhiko AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Izumiotsu-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Osaka 595-0075 (JP) PL PT RO RS SE SI SK SM TR • SATOH, Tomoya Designated Extension States: Izumiotsu-shi BA ME Osaka 595-0075 (JP) (71) Applicant: Stella Chemifa Corporation (74) Representative: Winter, Brandl, Fürniss, Hübner, Osaka-shi, Osaka 541-0047 (JP) Röss, Kaiser, Polte - Partnerschaft mbB Patent- und Rechtsanwaltskanzlei (72) Inventors: Alois-Steinecker-Strasse 22 • NISHIDA,Tetsuo 85354 Freising (DE) Izumiotsu-shi Osaka 595-0075 (JP) (54) METHOD FOR PRODUCING DIFLUOROPHOSPHATE (57) A process for preparing difluorophosphate com- from the difluorophosphoric acid by solid-liquid separa- prising reacting difluorophosphoric acid with at least one tion, the precipitate being precipitated by crystallization salt, as a raw material, selected from a halide salt, a car- operation in the difluorophosphoric acid, and removing bonate, a phosphate, a hydroxide and an oxide of an the difluorophosphoric acid contained in the precipitate alkali metal, an alkaline earth metal or an onium in the by distillation to obtain difluorophosphate. -
Hexafluorophosphoric Acid, 65% in Water Safety Data Sheet M001315 According to Federal Register / Vol
Hexafluorophosphoric acid, 65% in water Safety Data Sheet M001315 according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 06/13/2016 Version: 1.0 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Hexafluorophosphoric acid, 65% in water Product code : M001-3-15 Synonyms : Hydrogen hexafluorophosphate 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Laboratory chemicals Manufacture of substances Scientific research and development 1.3. Details of the supplier of the safety data sheet SynQuest Laboratories, Inc. P.O. Box 309 Alachua, FL 32615 - United States of America T (386) 462-0788 - F (386) 462-7097 [email protected] - www.synquestlabs.com 1.4. Emergency telephone number Emergency number : (844) 523-4086 (3E Company - Account 10069) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture Classification (GHS-US) Met. Corr. 1 H290 - May be corrosive to metals Acute Tox. 2 (Oral) H300 - Fatal if swallowed Acute Tox. 1 (Dermal) H310 - Fatal in contact with skin Acute Tox. 3 (Inhalation) H331 - Toxic if inhaled Skin Corr. 1B H314 - Causes severe skin burns and eye damage Eye Dam. 1 H318 - Causes serious eye damage STOT SE 3 H335 - May cause respiratory irritation Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS05 GHS06 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H290 - May -
Optimization of Progressive Freezing on Synthetic Produced Water by Circular Moving Cylindrical Crystallizer Via Response Surface Methodology
crystals Article Optimization of Progressive Freezing on Synthetic Produced Water by Circular Moving Cylindrical Crystallizer via Response Surface Methodology Wan Nur Athirah Mazli 1 , Shafirah Samsuri 1,2,* , Nurul Aini Amran 1,2 and Eduard Hernández Yáñez 3 1 Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; [email protected] (W.N.A.M.); [email protected] (N.A.A.) 2 HICoE—Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia 3 Agri-Food Engineering and Biotechnology Department, Technical University of Catalonia-BarcelonaTech, C/Esteve Terradas, 8, 08860 Castelldefels, Spain; [email protected] * Correspondence: shafi[email protected] Abstract: Treatment and disposal are two main approaches for water cycle management in the oil and gas industry. Freeze concentration has been identified as one of the methods to separate water from wastewater samples. The conventional method used for solution movement in progressive freezing technique is stirring by a stirrer. However, the stirrer requires frequent maintenance as it needs to be cleaned and requires longer cleaning time due to the complex structure of a stirrer. Thus, the new solution movement for progressive freezing is proposed, which is circular moving progressive freezing. This study aims to remove water from the wastewater sample (i.e., produced water). To optimize and investigate the effect of coolant temperature, freezing time and rotation speed, response surface methodology (RSM) was applied to determine the efficiency of the process Citation: Mazli, W.N.A.; Samsuri, S.; and central composite design (CCD) was used to design the experiment. -
United States Patent Office Patented June 15, 1971
3,584,999 United States Patent Office Patented June 15, 1971 Alternatively, the POF may be pumped into a reactor 3,584,999 containing the hydrogen fluoride and the reaction carried MANUFACTURE OF PHOSPHORUS out at 10-100° C. or higher. PENTAFLUORIDE Robert A. Wiesboeck, Atlanta, Ga., assignor to United The mole ratio of the reactants is not critical; however, States Steel Corporation, Pittsburgh, Pa. best results were obtained when 2-4 (preferably 3) moles No Drawing. Filed Jan. 16, 1968, Ser. No. 698,128 of hydrogen fluoride are employed per mole of phos Int, C. C01b. 25/10 phoryl fluoride. U.S. C. 23-205 10 Claims Approximately one-half of the POF is converted to PFs of high purity. If the product is removed from the O reactor at temperatures above 20° C., some hydrogen. ABSTRACT OF THE DISCLOSURE fluoride and a trace of phosphoryl fluoride are also ob Phosphoryl fluoride is reacted with hydrogen fluoride tained. These impurities can be separated by fractional to form phosphorus pentafluoride and hexafluorophos condensation at -40° C. phoric acid, and the hexafluorophosphoric acid may be The remaining liquid phase of the reaction mixture is reacted with sulfur trioxide, pyrosulfuric acid or fluoro essentially 60-65 percent hexafluorophosphoric acid. The sulfonic acid to form additional phosphorus pentafluoride. yield of phosphorus pentafluoride can be increased by The hexafluorophosphoric acid from any source may be reaction of the remaining liquid with sulfur trioxide, as reacted with the sulfur trioxide and/or pyrosulfuric acid described hereinafter. Total conversion of POF to PFs, to liberate phosphorus pentafluoride. -
United States Patent [19] [11] 4,279,130 Finch Et Al
United States Patent [19] [11] 4,279,130 Finch et al. [45] Jul. 21, 1931 [54] RECOVERY OF 1,3-BUTADIENE BY [5 7] ABSTRACT FRACTIONAL CRYSTALLIZATION FROM Freezing and melting techniques are described for sepa FOUR-CARBON MIXTURES rating 1,3-butadiene from a mixture of four-carbon com [75] lnvembrs; Ray N_ Finch; William 1)_ Nash, both > pounds by fractional freezing of the liquid mixture and of Odessa, Tex_ by fractional melting thereof. It has been discovered _ that when a frozen four-carbon mixture (BB) containing [73] Asslgnw El Paso Products Cmnvany, Odessa, about 36% 1,3-butadiene (ED) is initially frozen, the Tel‘- ?rst frozen fraction of up to about 30% of the mixture is [21] APPL No; 41308 enriched about 80% over the feed sample while the ?ltrate is decreased in BD about 36%. A second frac [22] piledl May 22, 1979 tional crystallization of the melt and of the ?ltrate [51] Int. cl.3 ............................................. .. B01D 9/04 shOws c‘mtinued enrichment and impc’verish’l‘m as t° [52] US. Cl. ...................................... .. 62/544; 62/538; BD content’ réspectlvely‘ It ha? also een discovered 585/812 thatwhen a solldly frozen BB mlxture is slowly thawed [58] Field of Search ............... .. 62/532, 538, 539, 544; and .the melt is pmgressivfaly rammed’ ‘.11? me" be‘ ,-‘ 585/812_817 comes markedly enriched 1n BD. A continuous frac tional crystallization process that uses these discoveries [56] References Cited for producing BD at purities greater than 99% is de us‘ P ATENT DOCUMENTS scribed. Utilizing lique?ed natural gas (LNG) as the -l _ cryogen source for this process is also suggested, so that 13; gl'nold ------------------------------- - the refrigeration need for fractional crystallization of i ’ rec" ' ' ' ' ' ' ' ' ' ' ' " BB can be combined with the heating need for LNG 2780 663 2/1957 Gunness ............................ -
5356 Effect of Freezing Time and Shaking Speed on the Performance
International Journal of Automotive and Mechanical Engineering ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online) Volume 15, Issue 2 pp. 5356-5366 June 2018 © Universiti Malaysia Pahang, Malaysia DOI: https://doi.org/10.15282/ijame.15.2.2018.15.0412 Effect of Freezing Time and Shaking Speed on the Performance of Progressive Freeze Concentration via Vertical Finned Crystallizer N. A. Amran1, 2, S. Samsuri1, 2 and M. Jusoh3* 1Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia 2Centre for Biofuel and Biochemical Research, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia 3Department of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia *Email: [email protected] Phone: +6075535535; Fax: +6075588166 ABSTRACT Performance of a newly developed freeze concentrator named Vertical Finned Crystallizer (VFC) in concentrated glucose solution was evaluated. The VFC was designed as an attempt to provide an efficient Progressive Freeze Concentration (PFC) system by providing larger heat transfer area for crystallization. Glucose solution at an initial concentration of 11°Brix was concentrated through the new PFC system. The performance of the crystallizer was analyzed in parallel with the effect of freezing time and shaking speed to the system efficiency, represented by effective partition constant (K) and solute recovery (Y). The results show that the efficiency of the system has significantly improved portrayed by the lowest K value obtained of 0.383 and the highest Y value obtained of 0.96 g glucose/g initial glucose at intermediate circulation time and shaking speed. Thus, the VFC is evidently proven to have a high potential to be integrated in a PFC process as an efficient concentration system. -
Downloaded From
Experimental characterization and in situ measurements of chemical processes in the martian surface environment Quinn, R.C. Citation Quinn, R. C. (2005, May 18). Experimental characterization and in situ measurements of chemical processes in the martian surface environment. Retrieved from https://hdl.handle.net/1887/2313 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral thesis in the License: Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/2313 Note: To cite this publication please use the final published version (if applicable). Experimental characterization and in situ measurements of chemical processes in the martian surface environment Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden op gezag van de Rector Magnificus Dr. D. D. Breimer, hoogleraar in de faculteit der Wiskunde en Natuurwetenschappen en die der Geneeskunde, volgens besluit van het College voor Promoties te verdedigen op woensdag 18 Mei 2005 te klokke 15:15 uur door Richard Charles Quinn geboren te New York, USA Promotiecommissie Promotor: Prof. Dr. P. Ehrenfreund Referent: Prof. Dr. C. Chyba (Stanford University, USA) Overige leden: Prof. Dr. J. Fraaije Prof. Dr. R. A. Mathies (University of California, Berkeley, USA) Dr. F. J. Grunthaner (JPL, California Institute of Technology, USA) Dr. C. P. McKay (NASA Ames Research Center, USA) Dr. A. P. Zent (NASA Ames Research Center, USA) Dr. O. Botta (ISSI, Switzerland) Cover: Photo of the Atacama Desert, which is located along the northern Chilean pacific coast from 30° S to 20° S latitude. This image was taken near the Mars Oxidant Instru- ment deployment site which is located at 24°4'10" S, 69°51'59" W. -
Hazardous Waste List (California Code of Regulations, Title 22 Section 66261.126)
Hazardous Waste List (California Code of Regulations, Title 22 Section 66261.126) Appendix X - List of Chemical Names and Common Names for Hazardous Wastes and Hazardous Materials (a) This subdivision sets forth a list of chemicals which create a presumption that a waste is a hazardous waste. If a waste consists of or contains a chemical listed in this subdivision, the waste is presumed to be a hazardous waste Environmental Regulations of CALIFORNIA unless it is determined that the waste is not a hazardous waste pursuant to the procedures set forth in section 66262.11. The hazardous characteristics which serve as a basis for listing the chemicals are indicated in the list as follows: (X) toxic (C) corrosive (I) ignitable (R) reactive * =Extremely Hazardous A chemical denoted with an asterisk is presumed to be an extremely hazardous waste unless it does not exhibit any of the criteria set forth in section 66261.110 and section 66261.113. Trademark chemical names are indicated by all capital letters. 1. Acetaldehyde (X,I) 2. Acetic acid (X,C,I) 3. Acetone, Propanone (I) 4. *Acetone cyanohydrin (X) 5. Acetonitrile (X,I) 6. *2-Acetylaminofluorene, 2-AAF (X) 7. Acetyl benzoyl peroxide (X,I,R) 8. *Acetyl chloride (X,C,R) 9. Acetyl peroxide (X,I,R) 10. Acridine (X) 11. *Acrolein, Aqualin (X,I) 12. *Acrylonitrile (X,I) 13. *Adiponitrile (X) 14. *Aldrin; 1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4,5,8-endo-exodimethanonaphthlene (X) 15. *Alkyl aluminum chloride (C,I,R) 16. *Alkyl aluminum compounds (C,I,R) 17. -
High-Precision Coulometric Titrations of Acids Michael Charles Hadka Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1980 High-precision coulometric titrations of acids Michael Charles Hadka Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Hadka, Michael Charles, "High-precision coulometric titrations of acids " (1980). Retrospective Theses and Dissertations. 7375. https://lib.dr.iastate.edu/rtd/7375 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. -
Open Beer Samples
CRAFTING A PLEASANT NA IPA A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree in Bachelor of Science in Chemical Engineering by: __________________________________ Ryan R. Lima __________________________________ Matthew J. Morais __________________________________ Susan M. Ross Date: 3, March 2017 __________________________________ Professor Stephen J. Kmiotek, Advisor Worcester Polytechnic Institute This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. 1 Abstract The goal of this project was to craft a pleasant tasting non-alcoholic beer from Wachusett’s Green Monsta IPA. Experiments were developed for ethanol absorption that utilized the techniques of an oil layer, freezing, and heating. Results showed use of castor oil, corn oil, and coconut oil as a boundary layer have promise, but require further stimuli to lower ABV beyond 4%. Freezing was successful in removing adequate ethanol to form a NA beer, but the quantity produced from this technique was insufficient to be deemed feasible. Heated trials showed a continued downward trend in ABV, but exhibited degradation in color and aroma. Future research is to be guided towards the effect of pressure and chemical oil composition. 2 Acknowledgements This project was significantly influenced by the support and guidance of our project advisor, Professor Stephen Kmiotek who made the completion of this project possible. We would like to thank you for all the time you dedicated to helping us by giving us guidance, resources, and encouragement. -
Synthesis of Uranium Fluorosulfates and the Group VI B Difluorophosphates
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1973 Synthesis of Uranium Fluorosulfates and the Group VI B Difluorophosphates Larry McCain Emme Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Emme, Larry McCain, "Synthesis of Uranium Fluorosulfates and the Group VI B Difluorophosphates" (1973). Dissertations and Theses. Paper 1593. https://doi.org/10.15760/etd.1593 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. '\ AN ABSTRACT OF THE THESIS OF Larry ~1cCain Emme for the Master of Science in Chemistry August 10, 1973. Title: Synthesis of Uranium Fluorosulfates and Group VI B Difluoro phosphates APPROVED BY MEMBERS OF THE THESIS COMMITTEE: Gary L: Gard, Chairman M.-B. Silverman D. W. Barnum Some reactions leading to several anhydrous Uranium fluorosul fates through the use of fluorosulfonic acid or peroxydisulfuryl di- fluoride have been studied. It was found that HS0 F can oxidize uranium 3 metal to the +4 state or the +2 state depending on the reaction condi tions. The synthesis of the tan solid; U(S03F)4' and the pale green solid thought to be U(S03F)2 were prepa~ed in this manner. It was found that S206F2 can also oxidize uranium to yield the green solid U(S03F)3.