Solutions in Difluorophosphoric Acid

Total Page:16

File Type:pdf, Size:1020Kb

Solutions in Difluorophosphoric Acid SOLUTIONS IN DIFLUOROPHOSPHORIC ACID ' -by William Reed A THESIS SUBMITTED IN PARTIAL FULFILMENT OF -THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Chemistry We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January 196S 0 William Reed 1968 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his represen• tatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada Date February 27, 1968 (ii) ABSTRACT - The physical and inorganic chemistry of solutions in difluorophosphoric acid, HPO^Fg, has been studied, as part of a general study of solutions in non-aqueous protonic solvents. Difluorophosphoric acid is a colourless, associated liquid which might be expected to have solvent properties similar to those of other protonic systems such as H^O, I-^SO^ and HSO^F. However, electrical conductivity studies of solutions of various electrolytes and nuclear magnetic resonance studies of solutions of alkali metal difluorophosphates indicate that the acid is a poor solvent for electrolytes and that ion-pairing is probably extensive. Acid-base behaviour in HPO2F2 has been extensively in• vestigated. Compounds which behave as bases in this system in• clude metal difluorophosphates, chlorides, nitrates and carbonates, organic amines, and some organic nitro-compounds and carboxylic acids. Inorganic molecules such as F^SO^, HSO^F and SbF^ behave as acids. Reaction between an acid and a base in HPO2F2 commonly result in the formation of an insoluble salt. The reaction between KPO2F2 and SbF^, for example, has been used to prepare the new compound KSbF^P02F2« To further investigate the factors affecting acid strengths, cryoscopic and electrical conductivity studies of various inorganic oxy-acids were carried out in nitrobenzene, as solvent. The acids H^SO^, HSO3F and HPO2F2 appeared'to be vir• tual non-electrolytes in nitrobenzene, vrith ^SO^ apparently exhibiting some polymerization. (iii) TABLE OF CONTENTS • PAGE CHAPTER I General Introduction ' 1 1.1 Properties of difluorophosphoric acid 1 1.2 Acid-base behaviour in protonic solvents 4 1.3 Outline of present work 6 CHAPTER II Solutions of Metal Difluorophosphates 8 2.1 Introduction 8 2.2 Experimental 8 A) Preparation and purification of materials 8 i difluorophosphoric acid ii metal difluorophosphates B) Electrical conductivity 10. C) Nuclear magnetic resonance 17 D) Viscosity 18 E) Density 19 2.3 Results and discussion 19 A) Electrical conductivity 19 B) Nuclear magnetic resonance 30 C) Density 41 D) Viscosity 1+6 CHAPTER III Miscellaneous Bases 48 - A) Organic solutes 48 3.1 Introduction 48 3.2 Experimental 48 A) Electrical conductivity 48 B) Preparation and purification of materials 48 3.3 Results and discussion 49 (iv) • . PAGE B) Inorganic solutes . 53 3.4 Introduction 53 3.5 Experimental 54 3-6 Results and discussion " 54 CHAPTER IV Acids and Acid-Base Reactions 62 4.1 Introduction 62 4.2 Experimental 63 A) Preparation and purification of materials 63 B) Electrical conductivity 64 C) Nuclear magnetic resonance 65 4.3 Protonic acids: results and discussion 65 4.4 SbF^ solutions: results and discussion 72 4.5 Studies on KSbF5P02F2 95 CHAPTER V Nitrobenzene. Solutions 102 5.1 Introduction 102 5.2 Experimental 103 A) Cryoscopy 103 B) Electrical conductivity 108 C) Preparation of materials 109 5.3 Results and discussion 109 A) Fluorosulphuric acid solutions 110 B) Sulphuric acid solutions 117 C) Pifluorophosphoric acid solutions 121 5.4 Conclusion 121 CHAPTER VI Summary and Suggestions for Further Work 123 6.1 -Summary 123 6.2 Suggestions for further work 125 BIBLIOGRAPHY .127 (v) LIST OF TABLES . • TABLE PAGE 1. Physical Properties of Difluorophosphoric Acid t 2 2. Specific Conductivities of the Alkali and Some Alkaline 20 Earth Metal Difluorophosphates at 25° 3. Equivalent Conductivities of Some Difluorophosphates at 25° . 23 4. Specific Conductivities of Some Potassium Salts in Various Solvents 26 1 19 1 5. H, F and ^ P Chemical Shifts for Solutions of MP0„F9 in HP02F2 32 6. Densities and Viscosities of Some Solutes in HP02F2 at 25° 42 7. Specific Conductivities of Some Organic Bases in KPOoFo at 25° . 50 • #. Specific Conductivities of Various Electrolytes in HPO F at 25° 55 2 2 9. Specific Conductivities of Some Acids in HP02F2 at 25° 66 10. 19F.and 31p Ch emical Shifts and Coupling Constants for Some Complex Antimony-Fluorine Species 82 11. Infrared Spectra .of Various Inorganic Fluorine Compounds 96 12. Infrared Snectrum of Gaseous Products from the Decomposition of KSbF5P02F2 100 13. Cryoscopic Measurements in Nitrobenzene 111 14. Specific Conductivities of Some Electrolytes in Nitrobenzene at 25° 114 15. Equivalent Conductivities of Some Electrolytes in Nitrobenzene at 25° 119 (vi) LIST OF FIGURES FIGURE PAGE 1. Difluorophosphoric Acid Distillation Apparatus 9 2. Electrical Conductivity Cell - 11 3. Injector, used for Solute Additions to the Conductivity . Cell ' 13 4. Microburette, used for Solute Additions to the Conductivity Cell 16 5. Specific Conductivities of Some Difluorophosphates at 25° 21 6. Equivalent Conductivities of Some Dif luorophosphates at 25° plotted against the Square Root of the Ionic Strength 25 7. N.M.R. Chemical Shifts for MP02F2 in HP02F2 34 19 8. F N.M.R. Chemical Shifts for MPOgFg in HP02F2 35 31 9. P N.M.R. Chemical Shifts for MP02F2 in HP02F2 36 10. Densities of Some Metal Difluorophosphates in HPO^Fo 44 at 25° 11. Specific Conductivities o-f Some Organic Bases in HP09F9 at 25° 51 12. Specific Conductivities, of Various Electrolytes in HP02F2 at 25° 56 13- Specific Conductivities of Various Potassium Salts in HP02F2 at 25° 59 14. Specific Conductivities of Some Acids in HP02F2 at 25° 08 15. Acid-Base Titrations in HP02F2 at 25° 70 16. - Acid-Base Titrations for SbF against KPO F in HPO F at 25° 5 . 1 Z 1 75 19 17. F N.M.R. Spectrum of a 3.63 molal SbF£./HP0oFo Solution 5 at 30° ^ d. 7g 19 18. F N.M.R. Spectrum of a 3.63 molal 3bF_/HP0oF Solution at -65° 5 2 2 79 19. 19F N.M.R. Spectrum of a 7.0 molal SbF /HPO F Solution at 30° 5 2 2 80 (vii) FIGURE . PAGE 20. 1^F N.M.R. Spectra of the P-F Region for a 2.31 molal SbF5/HP02F2 Solution at 30° and -70° 84 21. 19F N.M.R. Spectrum in the Sb-F Region for a 2.31 molal ' SbF5/HP02F2 Solution at -70 (peak M) 85 22a) X9F N.M.R. Spectra in the Sb-F Region for a 2.31 molal • SbF5/HP02F2 Solution at -70° (peaks K, L and P) 86 22b) ^F.N.M.R. Spectrum in the Sb-F Region for a 2.31 molal SbF5/HP02F2 Solution at -70° (peaks N & 0) 87 23. X9F High-Resolution N.M.R. Spectrum of the P-F Region for a 2.31 molal SbF5/HP02F2 Solution at 30° 92 24. 51P N.M.R. Soectrum of a 2.62 molal•SbFr/HPO-F- Solution at 30° ? 93 25. Details of the31 P N.M.R. Spectrum of a 2.62 molal SbF./ 5 HP02F2 Solution at 30° 94 26. Vacuum Line used for the Decomposition of KSbF^P02F2 98 27. Cryostat, used for Nitrobenzene Solutions 104 28. Depression of Freezing Point (AT) for Various Solutes in Nitrobenzene 112' 29. Specific Conductivities of Some Solutes in.Nitrobenzene at 25 116 30. Equivalent Conductivities of Some Electrolytes in Nitrobenzene at 25° 118 (viii) ACKNOWLEDGMENTS The author wishes to express gratitude to Dr. R. C. Thompson who first suggested the problem, and under whose guidance the work was done. Thanks are due to Mr. S. Rak who constructed the glass apparatus, to Mr. R. Burton who operated the H.A..100 n.m.r. spectrometer, to Mr. R. Wolfe who assisted with the operation of the platinum resistance thermometer and finally to Mr. L. Neering for many helpful suggestions. The generous gift of difluorophosphoric acid by the Czark-Mahoning Chemical Company is also gratefully acknowledged. CHAPTER I '• ..' -General Introduction At the turn of the century solution chemistry was largely, concerned with reactions carried out in aqueous media. During the past five decades, however, studies on a variety of non• aqueous solvents have resulted in the development of many new solvent systems. The experience so obtained has greatly broad• ened the scope of synthetic chemistry and has considerably in• creased the understanding of the physical and chemical properties of solutions. Although the number of solvents which have been investigated is very large, extensive and systematic studies on the physical properties of solutions have been limited to rather few solvents, notably HF, H^SO^ and NH^ and to a smaller extent -HSO^F, S02 and HC1. The purpose of the work described in this thesis was to study the properties of solutions in anhydrous difluorophosphoric acid and to investigate the possibility of HP02F2 as a prepara• tive medium. At present, the range of suitable and readily available fluorinated solvents of use for the preparation of fluorides is limited essentially to hydrogen fluoride, fluoro• sulphuric acid and bromine trifluoride and it is hoped that HP02F2 will extend this range. 1.1 Properties of difluorophosphoric acid The literature regarding difluorophosphoric acid has been 2 reviewed recently >3,4 and as little fresh information has ap• peared since these reviews were written, the usual historical 2 review of the solvent will be dispensed with.
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Method for Producing Difluorophosphate
    (19) TZZ _T (11) EP 2 826 747 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 21.01.2015 Bulletin 2015/04 C01B 25/455 (2006.01) (21) Application number: 12871541.4 (86) International application number: PCT/JP2012/057408 (22) Date of filing: 14.03.2012 (87) International publication number: WO 2013/136533 (19.09.2013 Gazette 2013/38) (84) Designated Contracting States: • SHOGAMI, Kazuhiko AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Izumiotsu-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Osaka 595-0075 (JP) PL PT RO RS SE SI SK SM TR • SATOH, Tomoya Designated Extension States: Izumiotsu-shi BA ME Osaka 595-0075 (JP) (71) Applicant: Stella Chemifa Corporation (74) Representative: Winter, Brandl, Fürniss, Hübner, Osaka-shi, Osaka 541-0047 (JP) Röss, Kaiser, Polte - Partnerschaft mbB Patent- und Rechtsanwaltskanzlei (72) Inventors: Alois-Steinecker-Strasse 22 • NISHIDA,Tetsuo 85354 Freising (DE) Izumiotsu-shi Osaka 595-0075 (JP) (54) METHOD FOR PRODUCING DIFLUOROPHOSPHATE (57) A process for preparing difluorophosphate com- from the difluorophosphoric acid by solid-liquid separa- prising reacting difluorophosphoric acid with at least one tion, the precipitate being precipitated by crystallization salt, as a raw material, selected from a halide salt, a car- operation in the difluorophosphoric acid, and removing bonate, a phosphate, a hydroxide and an oxide of an the difluorophosphoric acid contained in the precipitate alkali metal, an alkaline earth metal or an onium in the by distillation to obtain difluorophosphate.
    [Show full text]
  • Hexafluorophosphoric Acid, 65% in Water Safety Data Sheet M001315 According to Federal Register / Vol
    Hexafluorophosphoric acid, 65% in water Safety Data Sheet M001315 according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 06/13/2016 Version: 1.0 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Hexafluorophosphoric acid, 65% in water Product code : M001-3-15 Synonyms : Hydrogen hexafluorophosphate 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Laboratory chemicals Manufacture of substances Scientific research and development 1.3. Details of the supplier of the safety data sheet SynQuest Laboratories, Inc. P.O. Box 309 Alachua, FL 32615 - United States of America T (386) 462-0788 - F (386) 462-7097 [email protected] - www.synquestlabs.com 1.4. Emergency telephone number Emergency number : (844) 523-4086 (3E Company - Account 10069) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture Classification (GHS-US) Met. Corr. 1 H290 - May be corrosive to metals Acute Tox. 2 (Oral) H300 - Fatal if swallowed Acute Tox. 1 (Dermal) H310 - Fatal in contact with skin Acute Tox. 3 (Inhalation) H331 - Toxic if inhaled Skin Corr. 1B H314 - Causes severe skin burns and eye damage Eye Dam. 1 H318 - Causes serious eye damage STOT SE 3 H335 - May cause respiratory irritation Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS05 GHS06 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H290 - May
    [Show full text]
  • Optimization of Progressive Freezing on Synthetic Produced Water by Circular Moving Cylindrical Crystallizer Via Response Surface Methodology
    crystals Article Optimization of Progressive Freezing on Synthetic Produced Water by Circular Moving Cylindrical Crystallizer via Response Surface Methodology Wan Nur Athirah Mazli 1 , Shafirah Samsuri 1,2,* , Nurul Aini Amran 1,2 and Eduard Hernández Yáñez 3 1 Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; [email protected] (W.N.A.M.); [email protected] (N.A.A.) 2 HICoE—Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia 3 Agri-Food Engineering and Biotechnology Department, Technical University of Catalonia-BarcelonaTech, C/Esteve Terradas, 8, 08860 Castelldefels, Spain; [email protected] * Correspondence: shafi[email protected] Abstract: Treatment and disposal are two main approaches for water cycle management in the oil and gas industry. Freeze concentration has been identified as one of the methods to separate water from wastewater samples. The conventional method used for solution movement in progressive freezing technique is stirring by a stirrer. However, the stirrer requires frequent maintenance as it needs to be cleaned and requires longer cleaning time due to the complex structure of a stirrer. Thus, the new solution movement for progressive freezing is proposed, which is circular moving progressive freezing. This study aims to remove water from the wastewater sample (i.e., produced water). To optimize and investigate the effect of coolant temperature, freezing time and rotation speed, response surface methodology (RSM) was applied to determine the efficiency of the process Citation: Mazli, W.N.A.; Samsuri, S.; and central composite design (CCD) was used to design the experiment.
    [Show full text]
  • United States Patent Office Patented June 15, 1971
    3,584,999 United States Patent Office Patented June 15, 1971 Alternatively, the POF may be pumped into a reactor 3,584,999 containing the hydrogen fluoride and the reaction carried MANUFACTURE OF PHOSPHORUS out at 10-100° C. or higher. PENTAFLUORIDE Robert A. Wiesboeck, Atlanta, Ga., assignor to United The mole ratio of the reactants is not critical; however, States Steel Corporation, Pittsburgh, Pa. best results were obtained when 2-4 (preferably 3) moles No Drawing. Filed Jan. 16, 1968, Ser. No. 698,128 of hydrogen fluoride are employed per mole of phos Int, C. C01b. 25/10 phoryl fluoride. U.S. C. 23-205 10 Claims Approximately one-half of the POF is converted to PFs of high purity. If the product is removed from the O reactor at temperatures above 20° C., some hydrogen. ABSTRACT OF THE DISCLOSURE fluoride and a trace of phosphoryl fluoride are also ob Phosphoryl fluoride is reacted with hydrogen fluoride tained. These impurities can be separated by fractional to form phosphorus pentafluoride and hexafluorophos condensation at -40° C. phoric acid, and the hexafluorophosphoric acid may be The remaining liquid phase of the reaction mixture is reacted with sulfur trioxide, pyrosulfuric acid or fluoro essentially 60-65 percent hexafluorophosphoric acid. The sulfonic acid to form additional phosphorus pentafluoride. yield of phosphorus pentafluoride can be increased by The hexafluorophosphoric acid from any source may be reaction of the remaining liquid with sulfur trioxide, as reacted with the sulfur trioxide and/or pyrosulfuric acid described hereinafter. Total conversion of POF to PFs, to liberate phosphorus pentafluoride.
    [Show full text]
  • United States Patent [19] [11] 4,279,130 Finch Et Al
    United States Patent [19] [11] 4,279,130 Finch et al. [45] Jul. 21, 1931 [54] RECOVERY OF 1,3-BUTADIENE BY [5 7] ABSTRACT FRACTIONAL CRYSTALLIZATION FROM Freezing and melting techniques are described for sepa FOUR-CARBON MIXTURES rating 1,3-butadiene from a mixture of four-carbon com [75] lnvembrs; Ray N_ Finch; William 1)_ Nash, both > pounds by fractional freezing of the liquid mixture and of Odessa, Tex_ by fractional melting thereof. It has been discovered _ that when a frozen four-carbon mixture (BB) containing [73] Asslgnw El Paso Products Cmnvany, Odessa, about 36% 1,3-butadiene (ED) is initially frozen, the Tel‘- ?rst frozen fraction of up to about 30% of the mixture is [21] APPL No; 41308 enriched about 80% over the feed sample while the ?ltrate is decreased in BD about 36%. A second frac [22] piledl May 22, 1979 tional crystallization of the melt and of the ?ltrate [51] Int. cl.3 ............................................. .. B01D 9/04 shOws c‘mtinued enrichment and impc’verish’l‘m as t° [52] US. Cl. ...................................... .. 62/544; 62/538; BD content’ réspectlvely‘ It ha? also een discovered 585/812 thatwhen a solldly frozen BB mlxture is slowly thawed [58] Field of Search ............... .. 62/532, 538, 539, 544; and .the melt is pmgressivfaly rammed’ ‘.11? me" be‘ ,-‘ 585/812_817 comes markedly enriched 1n BD. A continuous frac tional crystallization process that uses these discoveries [56] References Cited for producing BD at purities greater than 99% is de us‘ P ATENT DOCUMENTS scribed. Utilizing lique?ed natural gas (LNG) as the -l _ cryogen source for this process is also suggested, so that 13; gl'nold ------------------------------- - the refrigeration need for fractional crystallization of i ’ rec" ' ' ' ' ' ' ' ' ' ' ' " BB can be combined with the heating need for LNG 2780 663 2/1957 Gunness ............................
    [Show full text]
  • 5356 Effect of Freezing Time and Shaking Speed on the Performance
    International Journal of Automotive and Mechanical Engineering ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online) Volume 15, Issue 2 pp. 5356-5366 June 2018 © Universiti Malaysia Pahang, Malaysia DOI: https://doi.org/10.15282/ijame.15.2.2018.15.0412 Effect of Freezing Time and Shaking Speed on the Performance of Progressive Freeze Concentration via Vertical Finned Crystallizer N. A. Amran1, 2, S. Samsuri1, 2 and M. Jusoh3* 1Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia 2Centre for Biofuel and Biochemical Research, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia 3Department of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia *Email: [email protected] Phone: +6075535535; Fax: +6075588166 ABSTRACT Performance of a newly developed freeze concentrator named Vertical Finned Crystallizer (VFC) in concentrated glucose solution was evaluated. The VFC was designed as an attempt to provide an efficient Progressive Freeze Concentration (PFC) system by providing larger heat transfer area for crystallization. Glucose solution at an initial concentration of 11°Brix was concentrated through the new PFC system. The performance of the crystallizer was analyzed in parallel with the effect of freezing time and shaking speed to the system efficiency, represented by effective partition constant (K) and solute recovery (Y). The results show that the efficiency of the system has significantly improved portrayed by the lowest K value obtained of 0.383 and the highest Y value obtained of 0.96 g glucose/g initial glucose at intermediate circulation time and shaking speed. Thus, the VFC is evidently proven to have a high potential to be integrated in a PFC process as an efficient concentration system.
    [Show full text]
  • Downloaded From
    Experimental characterization and in situ measurements of chemical processes in the martian surface environment Quinn, R.C. Citation Quinn, R. C. (2005, May 18). Experimental characterization and in situ measurements of chemical processes in the martian surface environment. Retrieved from https://hdl.handle.net/1887/2313 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral thesis in the License: Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/2313 Note: To cite this publication please use the final published version (if applicable). Experimental characterization and in situ measurements of chemical processes in the martian surface environment Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden op gezag van de Rector Magnificus Dr. D. D. Breimer, hoogleraar in de faculteit der Wiskunde en Natuurwetenschappen en die der Geneeskunde, volgens besluit van het College voor Promoties te verdedigen op woensdag 18 Mei 2005 te klokke 15:15 uur door Richard Charles Quinn geboren te New York, USA Promotiecommissie Promotor: Prof. Dr. P. Ehrenfreund Referent: Prof. Dr. C. Chyba (Stanford University, USA) Overige leden: Prof. Dr. J. Fraaije Prof. Dr. R. A. Mathies (University of California, Berkeley, USA) Dr. F. J. Grunthaner (JPL, California Institute of Technology, USA) Dr. C. P. McKay (NASA Ames Research Center, USA) Dr. A. P. Zent (NASA Ames Research Center, USA) Dr. O. Botta (ISSI, Switzerland) Cover: Photo of the Atacama Desert, which is located along the northern Chilean pacific coast from 30° S to 20° S latitude. This image was taken near the Mars Oxidant Instru- ment deployment site which is located at 24°4'10" S, 69°51'59" W.
    [Show full text]
  • Hazardous Waste List (California Code of Regulations, Title 22 Section 66261.126)
    Hazardous Waste List (California Code of Regulations, Title 22 Section 66261.126) Appendix X - List of Chemical Names and Common Names for Hazardous Wastes and Hazardous Materials (a) This subdivision sets forth a list of chemicals which create a presumption that a waste is a hazardous waste. If a waste consists of or contains a chemical listed in this subdivision, the waste is presumed to be a hazardous waste Environmental Regulations of CALIFORNIA unless it is determined that the waste is not a hazardous waste pursuant to the procedures set forth in section 66262.11. The hazardous characteristics which serve as a basis for listing the chemicals are indicated in the list as follows: (X) toxic (C) corrosive (I) ignitable (R) reactive * =Extremely Hazardous A chemical denoted with an asterisk is presumed to be an extremely hazardous waste unless it does not exhibit any of the criteria set forth in section 66261.110 and section 66261.113. Trademark chemical names are indicated by all capital letters. 1. Acetaldehyde (X,I) 2. Acetic acid (X,C,I) 3. Acetone, Propanone (I) 4. *Acetone cyanohydrin (X) 5. Acetonitrile (X,I) 6. *2-Acetylaminofluorene, 2-AAF (X) 7. Acetyl benzoyl peroxide (X,I,R) 8. *Acetyl chloride (X,C,R) 9. Acetyl peroxide (X,I,R) 10. Acridine (X) 11. *Acrolein, Aqualin (X,I) 12. *Acrylonitrile (X,I) 13. *Adiponitrile (X) 14. *Aldrin; 1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-1,4,5,8-endo-exodimethanonaphthlene (X) 15. *Alkyl aluminum chloride (C,I,R) 16. *Alkyl aluminum compounds (C,I,R) 17.
    [Show full text]
  • High-Precision Coulometric Titrations of Acids Michael Charles Hadka Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1980 High-precision coulometric titrations of acids Michael Charles Hadka Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Hadka, Michael Charles, "High-precision coulometric titrations of acids " (1980). Retrospective Theses and Dissertations. 7375. https://lib.dr.iastate.edu/rtd/7375 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • Open Beer Samples
    CRAFTING A PLEASANT NA IPA A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree in Bachelor of Science in Chemical Engineering by: __________________________________ Ryan R. Lima __________________________________ Matthew J. Morais __________________________________ Susan M. Ross Date: 3, March 2017 __________________________________ Professor Stephen J. Kmiotek, Advisor Worcester Polytechnic Institute This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. 1 Abstract The goal of this project was to craft a pleasant tasting non-alcoholic beer from Wachusett’s Green Monsta IPA. Experiments were developed for ethanol absorption that utilized the techniques of an oil layer, freezing, and heating. Results showed use of castor oil, corn oil, and coconut oil as a boundary layer have promise, but require further stimuli to lower ABV beyond 4%. Freezing was successful in removing adequate ethanol to form a NA beer, but the quantity produced from this technique was insufficient to be deemed feasible. Heated trials showed a continued downward trend in ABV, but exhibited degradation in color and aroma. Future research is to be guided towards the effect of pressure and chemical oil composition. 2 Acknowledgements This project was significantly influenced by the support and guidance of our project advisor, Professor Stephen Kmiotek who made the completion of this project possible. We would like to thank you for all the time you dedicated to helping us by giving us guidance, resources, and encouragement.
    [Show full text]
  • Synthesis of Uranium Fluorosulfates and the Group VI B Difluorophosphates
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1973 Synthesis of Uranium Fluorosulfates and the Group VI B Difluorophosphates Larry McCain Emme Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Emme, Larry McCain, "Synthesis of Uranium Fluorosulfates and the Group VI B Difluorophosphates" (1973). Dissertations and Theses. Paper 1593. https://doi.org/10.15760/etd.1593 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. '\ AN ABSTRACT OF THE THESIS OF Larry ~1cCain Emme for the Master of Science in Chemistry August 10, 1973. Title: Synthesis of Uranium Fluorosulfates and Group VI B Difluoro­ phosphates APPROVED BY MEMBERS OF THE THESIS COMMITTEE: Gary L: Gard, Chairman M.-B. Silverman D. W. Barnum Some reactions leading to several anhydrous Uranium fluorosul­ fates through the use of fluorosulfonic acid or peroxydisulfuryl di- fluoride have been studied. It was found that HS0 F can oxidize uranium 3 metal to the +4 state or the +2 state depending on the reaction condi­ tions. The synthesis of the tan solid; U(S03F)4' and the pale green solid thought to be U(S03F)2 were prepa~ed in this manner. It was found that S206F2 can also oxidize uranium to yield the green solid U(S03F)3.
    [Show full text]