Using Heteroskedastic Ordered Probit Models to Recover Moments of Continuous Test Score Distributions from Coarsened Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Instrumental Variables Probit Estimator Using Gretl
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics An Instrumental Variables Probit Estimator using gretl Lee C. Adkins Professor of Economics, Oklahoma State University, Stillwater, OK 74078 [email protected] Abstract. The most widely used commercial software to estimate endogenous probit models offers two choices: a computationally simple generalized least squares estimator and a maximum likelihood estimator. Adkins [1, -. com%ares these estimators to several others in a Monte Carlo study and finds that the 1LS estimator performs reasonably well in some circumstances. In this paper the small sample properties of the various estimators are reviewed and a simple routine us- ing the gretl software is given that yields identical results to those produced by Stata 10.1. The paper includes an example estimated using data on bank holding companies. 1 Introduction 4atchew and Griliches +,5. analyze the effects of various kinds of misspecifi- cation on the probit model. Among the problems explored was that of errors- in-variables. In linear re$ression, a regressor measured with error causes least squares to be inconsistent and 4atchew and Griliches find similar results for probit. Rivers and 7#ong [14] and Smith and 8lundell +,9. suggest two-stage estimators for probit and tobit, respectively. The strategy is to model a con- tinuous endogenous regressor as a linear function of the exogenous regressors and some instruments. Predicted values from this regression are then used in the second stage probit or tobit. These two-step methods are not efficient, &ut are consistent. -
Multivariate Ordinal Regression Models: an Analysis of Corporate Credit Ratings
Statistical Methods & Applications https://doi.org/10.1007/s10260-018-00437-7 ORIGINAL PAPER Multivariate ordinal regression models: an analysis of corporate credit ratings Rainer Hirk1 · Kurt Hornik1 · Laura Vana1 Accepted: 22 August 2018 © The Author(s) 2018 Abstract Correlated ordinal data typically arises from multiple measurements on a collection of subjects. Motivated by an application in credit risk, where multiple credit rating agencies assess the creditworthiness of a firm on an ordinal scale, we consider mul- tivariate ordinal regression models with a latent variable specification and correlated error terms. Two different link functions are employed, by assuming a multivariate normal and a multivariate logistic distribution for the latent variables underlying the ordinal outcomes. Composite likelihood methods, more specifically the pairwise and tripletwise likelihood approach, are applied for estimating the model parameters. Using simulated data sets with varying number of subjects, we investigate the performance of the pairwise likelihood estimates and find them to be robust for both link functions and reasonable sample size. The empirical application consists of an analysis of corporate credit ratings from the big three credit rating agencies (Standard & Poor’s, Moody’s and Fitch). Firm-level and stock price data for publicly traded US firms as well as an unbalanced panel of issuer credit ratings are collected and analyzed to illustrate the proposed framework. Keywords Composite likelihood · Credit ratings · Financial ratios · Latent variable models · Multivariate ordered probit · Multivariate ordered logit 1 Introduction The analysis of univariate or multivariate ordinal outcomes is an important task in various fields of research from social sciences to medical and clinical research. -
An Empirical Analysis of Factors Affecting Honors Program Completion Rates
An Empirical Analysis of Factors Affecting Honors Program Completion Rates HALLIE SAVAGE CLARION UNIVERSITY OF PENNSYLVANIA AND T H E NATIONAL COLLEGIATE HONOR COUNCIL ROD D. RAE H SLER CLARION UNIVERSITY OF PENNSYLVANIA JOSE ph FIEDOR INDIANA UNIVERSITY OF PENNSYLVANIA INTRODUCTION ne of the most important issues in any educational environment is iden- tifying factors that promote academic success. A plethora of research on suchO factors exists across most academic fields, involving a wide range of student demographics, and the definition of student success varies across the range of studies published. While much of the research is devoted to looking at student performance in particular courses and concentrates on examina- tion scores and grades, many authors have directed their attention to student success in the context of an entire academic program; student success in this context usually centers on program completion or graduation and student retention. The analysis in this paper follows the emphasis of McKay on the importance of conducting repeated research on student completion of honors programs at different universities for different time periods. This paper uses a probit regression analysis as well as the logit regression analysis employed by McKay in order to determine predictors of student success in the honors pro- gram at a small, public university, thus attempting to answer McKay’s call for a greater understanding of honors students and factors influencing their suc- cess. The use of two empirical models on completion data, employing differ- ent base distributions, provides more robust statistical estimates than observed in similar studies 115 SPRING /SUMMER 2014 AN EMPIRI C AL ANALYSIS OF FA C TORS AFFE C TING COMPLETION RATES PREVIOUS LITEratURE The early years of our research was concurrent with the work of McKay, who studied the 2002–2005 entering honors classes at the University of North Florida and published his work in 2009. -
Application of Random-Effects Probit Regression Models
Journal of Consulting and Clinical Psychology Copyright 1994 by the American Psychological Association, Inc. 1994, Vol. 62, No. 2, 285-296 0022-006X/94/S3.00 Application of Random-Effects Probit Regression Models Robert D. Gibbons and Donald Hedeker A random-effects probit model is developed for the case in which the outcome of interest is a series of correlated binary responses. These responses can be obtained as the product of a longitudinal response process where an individual is repeatedly classified on a binary outcome variable (e.g., sick or well on occasion t), or in "multilevel" or "clustered" problems in which individuals within groups (e.g., firms, classes, families, or clinics) are considered to share characteristics that produce similar responses. Both examples produce potentially correlated binary responses and modeling these per- son- or cluster-specific effects is required. The general model permits analysis at both the level of the individual and cluster and at the level at which experimental manipulations are applied (e.g., treat- ment group). The model provides maximum likelihood estimates for time-varying and time-invari- ant covariates in the longitudinal case and covariates which vary at the level of the individual and at the cluster level for multilevel problems. A similar number of individuals within clusters or number of measurement occasions within individuals is not required. Empirical Bayesian estimates of per- son-specific trends or cluster-specific effects are provided. Models are illustrated with data from -
MNP: R Package for Fitting the Multinomial Probit Model
JSS Journal of Statistical Software May 2005, Volume 14, Issue 3. http://www.jstatsoft.org/ MNP: R Package for Fitting the Multinomial Probit Model Kosuke Imai David A. van Dyk Princeton University University of California, Irvine Abstract MNP is a publicly available R package that fits the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multi- nomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or party choice by voters in electoral studies. The MNP software can also fit the model with different choice sets for each in- dividual, and complete or partial individual choice orderings of the available alternatives from the choice set. The estimation is based on the efficient marginal data augmentation algorithm that is developed by Imai and van Dyk (2005). Keywords: data augmentation, discrete choice models, Markov chain Monte Carlo, preference data. 1. Introduction This paper illustrates how to use MNP, a publicly available R (R Development Core Team 2005) package, in order to fit the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multinomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or party choice by voters in electoral studies. The MNP software can also fit the model with different choice sets for each individual, and complete or partial individual choice orderings of the available alternatives from the choice set. -
Logit and Ordered Logit Regression (Ver
Getting Started in Logit and Ordered Logit Regression (ver. 3.1 beta) Oscar Torres-Reyna Data Consultant [email protected] http://dss.princeton.edu/training/ PU/DSS/OTR Logit model • Use logit models whenever your dependent variable is binary (also called dummy) which takes values 0 or 1. • Logit regression is a nonlinear regression model that forces the output (predicted values) to be either 0 or 1. • Logit models estimate the probability of your dependent variable to be 1 (Y=1). This is the probability that some event happens. PU/DSS/OTR Logit odelm From Stock & Watson, key concept 9.3. The logit model is: Pr(YXXXFXX 1 | 1= , 2 ,...=k β ) +0 β ( 1 +2 β 1 +βKKX 2 + ... ) 1 Pr(YXXX 1= | 1 , 2k = ,... ) 1−+(eβ0 + βXX 1 1 + β 2 2 + ...βKKX + ) 1 Pr(YXXX 1= | 1 , 2= ,... ) k ⎛ 1 ⎞ 1+ ⎜ ⎟ (⎝ eβ+0 βXX 1 1 + β 2 2 + ...βKK +X ⎠ ) Logit nd probita models are basically the same, the difference is in the distribution: • Logit – Cumulative standard logistic distribution (F) • Probit – Cumulative standard normal distribution (Φ) Both models provide similar results. PU/DSS/OTR It tests whether the combined effect, of all the variables in the model, is different from zero. If, for example, < 0.05 then the model have some relevant explanatory power, which does not mean it is well specified or at all correct. Logit: predicted probabilities After running the model: logit y_bin x1 x2 x3 x4 x5 x6 x7 Type predict y_bin_hat /*These are the predicted probabilities of Y=1 */ Here are the estimations for the first five cases, type: 1 x2 x3 x4 x5 x6 x7 y_bin_hatbrowse y_bin x Predicted probabilities To estimate the probability of Y=1 for the first row, replace the values of X into the logit regression equation. -
Diagnostic Plots — Distributional Diagnostic Plots
Title stata.com diagnostic plots — Distributional diagnostic plots Syntax Menu Description Options for symplot, quantile, and qqplot Options for qnorm and pnorm Options for qchi and pchi Remarks and examples Methods and formulas Acknowledgments References Also see Syntax Symmetry plot symplot varname if in , options1 Ordered values of varname against quantiles of uniform distribution quantile varname if in , options1 Quantiles of varname1 against quantiles of varname2 qqplot varname1 varname2 if in , options1 Quantiles of varname against quantiles of normal distribution qnorm varname if in , options2 Standardized normal probability plot pnorm varname if in , options2 Quantiles of varname against quantiles of χ2 distribution qchi varname if in , options3 χ2 probability plot pchi varname if in , options3 1 2 diagnostic plots — Distributional diagnostic plots options1 Description Plot marker options change look of markers (color, size, etc.) marker label options add marker labels; change look or position Reference line rlopts(cline options) affect rendition of the reference line Add plots addplot(plot) add other plots to the generated graph Y axis, X axis, Titles, Legend, Overall twoway options any options other than by() documented in[ G-3] twoway options options2 Description Main grid add grid lines Plot marker options change look of markers (color, size, etc.) marker label options add marker labels; change look or position Reference line rlopts(cline options) affect rendition of the reference line -
A User's Guide to Multiple Probit Or Logit Analysis. Gen
United States Department of Agriculture Forest Service Pacific Southwest Forest and Range Experiment Station General Technical Report PSW- 55 a user's guide to multiple Probit Or LOgit analysis Robert M. Russell, N. E. Savin, Jacqueline L. Robertson Authors: ROBERT M. RUSSELL has been a computer programmer at the Station since 1965. He was graduated from Graceland College in 1953, and holds a B.S. degree (1956) in mathematics from the University of Michigan. N. E. SAVIN earned a B.A. degree (1956) in economics and M.A. (1960) and Ph.D. (1969) degrees in economic statistics at the University of California, Berkeley. Since 1976, he has been a fellow and lecturer with the Faculty of Economics and Politics at Trinity College, Cambridge University, England. JACQUELINE L. ROBERTSON is a research entomologist assigned to the Station's insecticide evaluation research unit, at Berkeley, California. She earned a B.A. degree (1969) in zoology, and a Ph.D. degree (1973) in entomology at the University of California, Berkeley. She has been a member of the Station's research staff since 1966. Acknowledgments: We thank Benjamin Spada and Dr. Michael I. Haverty, Pacific Southwest Forest and Range Experiment Station, U.S. Department of Agriculture, Berkeley, California, for their support of the development of POL02. Publisher: Pacific Southwest Forest and Range Experiment Station P.O. Box 245, Berkeley, California 94701 September 1981 POLO2: a user's guide to multiple Probit Or LOgit analysis Robert M. Russell, N. E. Savin, Jacqueline L. Robertson CONTENTS -
Chapter 3: Discrete Choice
Chapter 3: Discrete Choice Joan Llull Microeconometrics IDEA PhD Program I. Binary Outcome Models A. Introduction In this chapter we analyze several models to deal with discrete outcome vari- ables. These models that predict in which of m mutually exclusive categories the outcome of interest falls. In this section m = 2, this is, we consider binary or dichotomic variables (e.g. whether to participate or not in the labor market, whether to have a child or not, whether to buy a good or not, whether to take our kid to a private or to a public school,...). In the next section we generalize the results to multiple outcomes. It is convenient to assume that the outcome y takes the value of 1 for cat- egory A, and 0 for category B. This is very convenient because, as a result, −1 PN N i=1 yi = Pr[c A is selected]. As a consequence of this property, the coeffi- cients of a linear regression model can be interpreted as marginal effects of the regressors on the probability of choosing alternative A. And, in the non-linear models, it allows us to write the likelihood function in a very compact way. B. The Linear Probability Model A simple approach to estimate the effect of x on the probability of choosing alternative A is the linear regression model. The OLS regression of y on x provides consistent estimates of the sample-average marginal effects of regressors x on the probability of choosing alternative A. As a result, the linear model is very useful for exploratory purposes. -
The Ordered Probit and Logit Models Have Come Into
ISSN 1444-8890 ECONOMIC THEORY, APPLICATIONS AND ISSUES Working Paper No. 42 Students’ Evaluation of Teaching Effectiveness: What Su rveys Tell and What They Do Not Tell by Mohammad Alauddin And Clem Tisdell November 2006 THE UNIVERSITY OF QUEENSLAND ISSN 1444-8890 ECONOMIC THEORY, APPLICATIONS AND ISSUES (Working Paper) Working Paper No. 42 Students’ Evaluation of Teaching Effectiveness: What Surveys Tell and What They Do Not Tell by Mohammad Alauddin1 and Clem Tisdell ∗ November 2006 © All rights reserved 1 School of Economics, The Univesity of Queensland, Brisbane 4072 Australia. Tel: +61 7 3365 6570 Fax: +61 7 3365 7299 Email: [email protected]. ∗ School of Economics, The University of Queensland, Brisbane 4072 Australia. Tel: +61 7 3365 6570 Fax: +61 7 3365 7299 Email: [email protected] Students’ Evaluations of Teaching Effectiveness: What Surveys Tell and What They Do Not Tell ABSTRACT Employing student evaluation of teaching (SET) data on a range of undergraduate and postgraduate economics courses, this paper uses ordered probit analysis to (i) investigate how student’s perceptions of ‘teaching quality’ (TEVAL) are influenced by their perceptions of their instructor’s attributes relating including presentation and explanation of lecture material, and organization of the instruction process; (ii) identify differences in the sensitivty of perceived teaching quality scores to variations in the independepent variables; (iii) investigate whether systematic differences in TEVAL scores occur for different levels of courses; and (iv) examine whether the SET data can provide a useful measure of teaching quality. It reveals that student’s perceptions of instructor’s improvement in organization, presentation and explanation, impact positively on students’ perceptions of teaching effectiveness. -
Lecture 9: Logit/Probit Prof
Lecture 9: Logit/Probit Prof. Sharyn O’Halloran Sustainable Development U9611 Econometrics II Review of Linear Estimation So far, we know how to handle linear estimation models of the type: Y = β0 + β1*X1 + β2*X2 + … + ε ≡ Xβ+ ε Sometimes we had to transform or add variables to get the equation to be linear: Taking logs of Y and/or the X’s Adding squared terms Adding interactions Then we can run our estimation, do model checking, visualize results, etc. Nonlinear Estimation In all these models Y, the dependent variable, was continuous. Independent variables could be dichotomous (dummy variables), but not the dependent var. This week we’ll start our exploration of non- linear estimation with dichotomous Y vars. These arise in many social science problems Legislator Votes: Aye/Nay Regime Type: Autocratic/Democratic Involved in an Armed Conflict: Yes/No Link Functions Before plunging in, let’s introduce the concept of a link function This is a function linking the actual Y to the estimated Y in an econometric model We have one example of this already: logs Start with Y = Xβ+ ε Then change to log(Y) ≡ Y′ = Xβ+ ε Run this like a regular OLS equation Then you have to “back out” the results Link Functions Before plunging in, let’s introduce the concept of a link function This is a function linking the actual Y to the estimated Y in an econometric model We have one example of this already: logs Start with Y = Xβ+ ε Different β’s here Then change to log(Y) ≡ Y′ = Xβ + ε Run this like a regular OLS equation Then you have to “back out” the results Link Functions If the coefficient on some particular X is β, then a 1 unit ∆X Æ β⋅∆(Y′) = β⋅∆[log(Y))] = eβ ⋅∆(Y) Since for small values of β, eβ ≈ 1+β , this is almost the same as saying a β% increase in Y (This is why you should use natural log transformations rather than base-10 logs) In general, a link function is some F(⋅) s.t. -
Lecture 6 Multiple Choice Models Part II – MN Probit, Ordered Choice
RS – Lecture 17 Lecture 6 Multiple Choice Models Part II – MN Probit, Ordered Choice 1 DCM: Different Models • Popular Models: 1. Probit Model 2. Binary Logit Model 3. Multinomial Logit Model 4. Nested Logit model 5. Ordered Logit Model • Relevant literature: - Train (2003): Discrete Choice Methods with Simulation - Franses and Paap (2001): Quantitative Models in Market Research - Hensher, Rose and Greene (2005): Applied Choice Analysis 1 RS – Lecture 17 Model – IIA: Alternative Models • In the MNL model we assumed independent nj with extreme value distributions. This essentially created the IIA property. • This is the main weakness of the MNL model. • The solution to the IIA problem is to relax the independence between the unobserved components of the latent utility, εi. • Solutions to IIA – Nested Logit Model, allowing correlation between some choices. – Models allowing correlation among the εi’s, such as MP Models. – Mixed or random coefficients models, where the marginal utilities associated with choice characteristics vary between individuals. Multinomial Probit Model • Changing the distribution of the error term in the RUM equation leads to alternative models. • A popular alternative: The εij’s follow an independent standard normal distributions for all i,j. • We retain independence across subjects but we allow dependence across alternatives, assuming that the vector εi = (εi1,εi2, , εiJ) follows a multivariate normal distribution, but with arbitrary covariance matrix Ω. 2 RS – Lecture 17 Multinomial Probit Model • The vector εi = (εi1,εi2, , εiJ) follows a multivariate normal distribution, but with arbitrary covariance matrix Ω. • The model is called the Multinomial probit model. It produces results similar results to the MNL model after standardization.