And Xanthomonas Translucens Pv

Total Page:16

File Type:pdf, Size:1020Kb

And Xanthomonas Translucens Pv Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 Genetic characterization of the interaction between Italian ryegrass (Lolium multiflorum Lam.) and Xanthomonas translucens pv. graminis Wichmann, Fabienne Abstract: Italian ryegrass (Lolium multiflorum Lam.) is a widely used for hay and silage production. Xanthomonas translucens pv. graminis (Xtg) is a plant pathogen and causes bacterial wilt on a number of forage grass species including L. multiflorum. The pathogen spreads through wounds caused when mowing with contaminated equipment. Resistance mechanisms of L. multiflorum and virulence mecha- nisms of Xtg are largely unknown. Therefore, the main objective of this thesis was to understand the interaction of Xtg with L. multiflorum. The first aim was to elucidate the existence of race-specificity in the L. multiflorum-Xtg interaction and to identify genomic regions that contribute to Xtg resistance. No race-specific interactions were found in 62 L. multiflorum genotypes infected with six Xtg isolates. Molecular marker-resistance associations revealed one simple sequence repeat marker on linkage group 5 to be significantly associated with bacterial wilt resistance. The second aim was to identify candidate genes for bacterial wilt resistance using a cDNA microarray of perennial ryegrass (L. perenne). Transcrip- tome analyses revealed candidate genes for bacterial wilt resistance such as the low silicon transporter and the germin-like protein 6. Virulence factors of Xtg were investigated by screening for genes encoding the type III secretion system. This revealed a sequence similar to the hrpG gene. A mutant deficient of the hrpG gene was obtained and infection with the ΔhrpG mutant lead to significantly reduced symp- toms. In planta analyses revealed that this mutant was still able to multiply inside its host. The data presented here provides comprehensive knowledge of this plant-pathogen interaction and represents a valuable basis for the development of tools for marker-assisted selection. Zusammenfassung Italienisches Raigras (Lolium multiflorum) wird häufig als Futtergras angebaut. Bakterienwelke ist eine Krankheit, die durch Xanthomonas translucens pv. graminis (Xtg), hervorgerufen wird. Die Züchtung von resistenten Sorten ist die effizienteste Kontrollmassnahme gegen Bakterienwelke. Die Quelle der Krankheitsresistenz und Virulenzmechanismen der Bakterien sind noch immer unbekannt. Deshalb war das Hauptziel dieser Arbeit, die Interaktion von L. multiflorum und Xtg besser zu charakterisieren. Das erste Ziel stellte die Aufklärung der Existenz von Rassenspezifität in der L. multiflorum-Xtg Interaktion dar. Zudem wur- den molekulare Marker untersucht, die mit Bakterienwelke Resistenz assoziiert sind. Es konnte keine Rassenspezifität gefunden werden in den 62 L. multiflorum Genotypen, die mit sechs verschiedenen Xtg Isolaten infiziert wurden. Die Analyse mit molekularen Markern zeigte, dass ein Mikrosatelliten Marker auf der Kopplungsgruppe 5 signifikant mit Bakterienwelke- Resistenz assoziiert war. Das zweite Ziel war, Kandidatengene für Xtg Resistenz in L. multiflorum zu identifizieren mittels einer Genexpressions- analyse. Dazu wurde ein cDNA Microrarray verwendet, der mit Sequenzen von Englischem Raigras (L. perenne) entwickelt worden war. Die Genexpressionsstudie führte zur Identifizierung von interessanten Kandidatengenen, die mit Bakterienwelke Resistenz assoziiert sein könnten. Um auch Gene von Xtg zu kennen, die für die Interaktion mit L. multiflorum von grosser Wichtigkeit sein könnten, wurde das Xtg Genom nach Virulenzgenen des Typ III Sekretionssystems untersucht. So wurde das hrpG Gen gefunden und eine Mutante generiert, die das hrpG Gen nicht mehr hat. Diese Mutante war signifikant weniger virulent bei der Infektion von L. multiflorum Pflanzen. In planta Analysen zeigten jedoch, dass die ΔhrpG Mutanten sich noch immer vermehren konnten. Die Erkenntnisse aus dieser Studie stellen einen elementaren Baustein dar, diese Interaktion in grossem Umfang zu verstehen und das erarbeitete Wissen stellt eine essentielle Grundlage dar für die Entwicklung von Marker gestützter Züchtung. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-59375 Dissertation Published Version Originally published at: Wichmann, Fabienne. Genetic characterization of the interaction between Italian ryegrass (Lolium mul- tiflorum Lam.) and Xanthomonas translucens pv. graminis. 2011, University of Zurich, Facultyof Science. 2 Genetic Characterization of the Interaction between Italian Ryegrass (Lolium multiflorum Lam.) and Xanthomonas translucens pv. graminis Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Fabienne Wichmann von Münchenstein BL Promotionskomitee: Prof. Dr. Beat Keller (Vorsitz) Prof. Dr. Robert Dudler Dr. Roland Kölliker (Leitung der Dissertation) Zürich, 2011 Table of contents Table of contents ....................................................................................................................... 1 Summary ................................................................................................................................... 6 Zusammenfassung .................................................................................................................... 8 1 General introduction ........................................................................................................... 10 1.1 Grasslands – important ecosystems ................................................................................ 11 1.1.1 The importance of ryegrasses in grassland production ........................................... 11 1.1.2 Systematics and genetics of the genus Lolium ........................................................ 12 1.2 Xanthomonas spp. – destructive plant pathogens ........................................................... 14 1.2.1 Diseases caused by Xanthomonas spp. ................................................................... 14 1.2.2 Systematics of Xanthomonas .................................................................................. 15 1.2.2 Xanthomonas translucens pv. graminis causing bacterial wilt of forage grass ...... 17 1.3 Virulence factors from Xanthomonas spp. ..................................................................... 19 1.3.1 The type III secretion system (T3SS) ...................................................................... 20 1.3.2 Other secretion systems ........................................................................................... 22 1.3.3 Extracellular polysaccharides (EPS) ....................................................................... 23 1.3.4 Lipopolysaccharides (LPS) ..................................................................................... 24 1.4 Concepts of disease resistance in plants ......................................................................... 25 1.4.1 Qualitative (race-specific) resistance ...................................................................... 26 1.4.2 Quantitative disease resistance ................................................................................ 27 1.5 Improving resistance to bacterial wilt ............................................................................ 27 1.5.1 Breeding for resistant forage grasses with recurrent selection ................................ 27 1.5.2 Genetic linkage maps and quantitative trait loci (QTL) .......................................... 28 1.5.3 Transcriptome analyses of host–bacterial pathogen interactions ............................ 30 1.5.4 Marker-assisted selection for disease resistance ..................................................... 32 1.6 Recent advances in the characterization of bacterial wilt resistance in Italian ryegrass 33 1.7 Objectives ....................................................................................................................... 35 1 Table of contents 2 Phenotypic and molecular genetic characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum ... 36 2.1 Abstract .......................................................................................................................... 37 2.2 Introduction .................................................................................................................... 37 2.3 Materials and Methods ................................................................................................... 40 2.3.1 Bacterial isolates and plant material ........................................................................ 40 2.3.2 Experimental design and disease scoring ................................................................ 40 2.3.3 Data analyses and statistics ..................................................................................... 41 2.3.4 Molecular marker and association analysis ............................................................. 42 2.4 Results ............................................................................................................................ 44 2.4.1 Data structure and distribution ................................................................................ 44 2.4.2 Regression modelling and race-specificity ............................................................
Recommended publications
  • Bacteria-Killing Type IV Secretion Systems
    fmicb-10-01078 May 18, 2019 Time: 16:6 # 1 REVIEW published: 21 May 2019 doi: 10.3389/fmicb.2019.01078 Bacteria-Killing Type IV Secretion Systems Germán G. Sgro1†, Gabriel U. Oka1†, Diorge P. Souza1‡, William Cenens1, Ethel Bayer-Santos1‡, Bruno Y. Matsuyama1, Natalia F. Bueno1, Thiago Rodrigo dos Santos1, Cristina E. Alvarez-Martinez2, Roberto K. Salinas1 and Chuck S. Farah1* 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 2 Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, University of Campinas (UNICAMP), Edited by: Campinas, Brazil Ignacio Arechaga, University of Cantabria, Spain Reviewed by: Bacteria have been constantly competing for nutrients and space for billions of years. Elisabeth Grohmann, During this time, they have evolved many different molecular mechanisms by which Beuth Hochschule für Technik Berlin, to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial Germany Xiancai Rao, and eukaryotic cells. These processes often employ large multimeric transmembrane Army Medical University, China nanomachines that have been classified as types I–IX secretion systems. One of the *Correspondence: most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have Chuck S. Farah [email protected] been shown to be able to secrete macromolecules directly into both eukaryotic and †These authors have contributed prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer equally to this work from one bacterium to another was restricted to protein-DNA complexes during ‡ Present address: bacterial conjugation. This view changed when it was shown by our group that many Diorge P.
    [Show full text]
  • Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas Albilineans
    Genes 2015, 6, 714-733; doi:10.3390/genes6030714 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Article Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans Isabelle Pieretti 1, Stéphane Cociancich 1, Stéphanie Bolot 2,3, Sébastien Carrère 2,3, Alexandre Morisset 1, Philippe Rott 1,† and Monique Royer 1,* 1 CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France; E-Mails: [email protected] (I.P.); [email protected] (S.C.); [email protected] (A.M.); [email protected] (P.R.) 2 INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 24 Chemin de Borde Rouge—Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France; E-Mails: [email protected] (S.B.); [email protected] (S.C.) 3 CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 24 Chemin de Borde Rouge—Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France † Present Address: University of Florida, IFAS, Everglades Research and Education Center, Belle Glade, FL 33430, USA; E-Mail: [email protected]. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-499-624-844. Academic Editor: J. Peter W. Young Received: 30 April 2015 / Accepted: 14 July 2015 / Published: 23 July 2015 Abstract: Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family.
    [Show full text]
  • Xanthomonas Oryzae Pathovar Oryzicola
    Xanthomonas oryzae pathovar oryzicola Scientific Name Xanthomonas oryzae pv. oryzicola (Fang et al 1957) Swings et al 1990 Synonyms: Xanthomonas campestris pv. oryzicola (Fang et al. 1957) Dye 1978 Xanthomonas oryzicola (Fang et al. 1956) Dowson 1943 Xanthomonas translucens f.sp. oryzicola (Fang et al. 1956) Bradbury 1971 Common Name(s) Bacterial leaf streak, BLS (English), Xoc Type of Pest Bacteria Taxonomic Position Kingdom: Bacteria, Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Xanthomonodales, Family: Xanthomonodaceae, Genus: Xanthomonas (Dowson, 1939) (EPPO, 2007). Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List – 2011 Pest Description The bacterium is a gram-negative, non-spore forming rod, 1.2 X 0.3-0.5 μm, with a single polar flagellum. Colonies on nutrient agar are pale yellow, circular, smooth, and convex. Phenotypic characters of the bacterium useful in differentiating it from X. oryzae pv. oryzae, causal agent of bacterial blight, are listed in Table 1 below. A monoclonal antibody specific for X. oryzae pv. oryzicola has been developed. Isolates of the bacterium that differ in virulence have been identified. In the rice host, the bacterium is present in the parenchyma tissue (Compendium of Rice Diseases ,1992). A pathovar is a bacterial strain (or set of strains) with similar characteristics that are usually distinguished by different host range. The Xanthomomonas oryzae has two pathovars (i.e. Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola) that affect the same host but have strong difference in symptomatology on the same host allowing different pathovar designations. X. oryzae pv. X. oryzae pv. oryzae oryzicola Acetoin production - + Strong peptonization of litmus milk - + Phenylalanine deaminase - +a Utilization of L-alanine - + Last Updated: January 18, 2017 Sensitive to 0.001% cupric nitrate (w/v) + - a Positive response in 50% of strains.
    [Show full text]
  • Detection and Characterization of Xanthomonas Vasicola Pv
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2017 Detection and Characterization of Xanthomonas vasicola pv. vasculorum (Cobb 1894) comb. nov. Causing Bacterial Leaf Streak of Corn in the United States J. M. Lang Colorado State University-Fort Collins E. DuCharme Colorado State University-Fort Collins J. Ibarra Caballero Colorado State University-Fort Collins, [email protected] E. Luna Colorado State University-Fort Collins, [email protected] T. Hartman University of Nebraska-Lincoln FSeoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: http://digitalcommons.unl.edu/plantpathpapers Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons Lang, J. M.; DuCharme, E.; Caballero, J. Ibarra; Luna, E.; Hartman, T.; Ortiz-Castro, M.; Korus, K. A.; Rascoe, J.; Jackson-Ziems, T. A.; Broders, K.; and Leach, J. E., "Detection and Characterization of Xanthomonas vasicola pv. vasculorum (Cobb 1894) comb. nov. Causing Bacterial Leaf Streak of Corn in the United States" (2017). Papers in Plant Pathology. 478. http://digitalcommons.unl.edu/plantpathpapers/478 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors J. M. Lang, E. DuCharme, J. Ibarra Caballero, E. Luna, T. Hartman, M. Ortiz-Castro, K. A. Korus, J. Rascoe, T. A. Jackson-Ziems, K. Broders, and J. E. Leach This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/plantpathpapers/478 L ANG ET AL., P HYTOPATHOLOGY 107 (2017) Published in Phytopathology 107:11 (2017), pp.
    [Show full text]
  • Functional Gibberellin Biosynthetic Operon in Beta-Proteobacteria Raimund Nagel Iowa State University, [email protected]
    Biochemistry, Biophysics and Molecular Biology Biochemistry, Biophysics and Molecular Biology Publications 11-2018 A Third Class: Functional Gibberellin Biosynthetic Operon in Beta-Proteobacteria Raimund Nagel Iowa State University, [email protected] John E. Bieber Iowa State University Mark G. Schmidt-Dannert Iowa State University, [email protected] Ryan S. Nett Iowa State University Reuben J. Peters Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/bbmb_ag_pubs Part of the Biochemistry, Biophysics, and Structural Biology Commons, Microbiology Commons, and the Plant Biology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ bbmb_ag_pubs/202. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Biochemistry, Biophysics and Molecular Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Biochemistry, Biophysics and Molecular Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Third Class: Functional Gibberellin Biosynthetic Operon in Beta- Proteobacteria Abstract The ba ility of plant-associated microbes to produce gibberellin A (GA) phytohormones was first described for the fungal rice pathogen Gibberella fujikuroi in the 1930s. Recently the capacity to produce GAs was shown for several bacteria, including symbiotic alpha-proteobacteria (α-rhizobia) and gamma-proteobacteria phytopathogens. All necessary enzymes for GA production are encoded by a conserved operon, which appears to have undergone horizontal transfer between and within these two phylogenetic classes of bacteria.
    [Show full text]
  • Threat Specific Contingency Plan Bacterial Leaf Streak Xanthomonas
    INDUSTRY BIOSECURITY PLAN FOR THE GRAINS INDUSTRY Threat Specific Contingency Plan Bacterial leaf streak Xanthomonas translucens pv. translucens Xanthomonas translucens pv. undulosa Prepared by Kurt Lindbeck Plant Health Australia June 2011 Contingency Plan – Bacterial leaf streak (Xanthomonas translucens) Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au Page 1 of 27 Contingency Plan – Bacterial leaf streak (Xanthomonas translucens) 1 Purpose and background of this Contingency Plan ................................................................. 4 2 Australian Grains Industry .......................................................................................................... 4 3 Eradication or containment decision matrix ............................................................................
    [Show full text]
  • Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas
    microorganisms Review Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas Vittoria Catara 1,* , Jaime Cubero 2 , Joël F. Pothier 3 , Eran Bosis 4 , Claude Bragard 5 , Edyta Ðermi´c 6 , Maria C. Holeva 7 , Marie-Agnès Jacques 8 , Francoise Petter 9, Olivier Pruvost 10 , Isabelle Robène 10 , David J. Studholme 11 , Fernando Tavares 12,13 , Joana G. Vicente 14 , Ralf Koebnik 15 and Joana Costa 16,17,* 1 Department of Agriculture, Food and Environment, University of Catania, 95125 Catania, Italy 2 National Institute for Agricultural and Food Research and Technology (INIA), 28002 Madrid, Spain; [email protected] 3 Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland; [email protected] 4 Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel; [email protected] 5 UCLouvain, Earth & Life Institute, Applied Microbiology, 1348 Louvain-la-Neuve, Belgium; [email protected] 6 Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; [email protected] 7 Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Bacteriology, GR-14561 Kifissia, Greece; [email protected] 8 IRHS, INRA, AGROCAMPUS-Ouest, Univ Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France; Citation: Catara, V.; Cubero, J.; [email protected] 9 Pothier, J.F.; Bosis, E.; Bragard, C.; European and Mediterranean Plant Protection Organization (EPPO/OEPP), 75011 Paris, France; Ðermi´c,E.; Holeva, M.C.; Jacques, [email protected] 10 CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; [email protected] (O.P.); M.-A.; Petter, F.; Pruvost, O.; et al.
    [Show full text]
  • Microbial Assemblage in Grapevine's Phyllosphere: Who Is the Driver?
    Microbial assemblage in grapevine’s phyllosphere : who is the driver ? Prashant Singh To cite this version: Prashant Singh. Microbial assemblage in grapevine’s phyllosphere : who is the driver ?. Agricultural sciences. Montpellier SupAgro, 2018. English. NNT : 2018NSAM0042. tel-02159427 HAL Id: tel-02159427 https://tel.archives-ouvertes.fr/tel-02159427 Submitted on 18 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de Docteur Délivrée par le Centre International d’Études Supérieures en Sciences Agronomiques Montpellier L’école Doctorate Systèmes Intégrès en Biologie, Agronomie, Géosciences L’unité de recherche AGAP Spécialité : Biologie intégrative de la plante Présentée par Prashant SINGH Microbial Assemblage in Grapevine's Phyllosphere: Who is the Driver? Soutenue le 30 novembre 2018 devant le jury composé de Isabelle MASNEUF, Professeur, Rapporteur Bordeaux Sciences Agro Aziz AZIZ, Maître de conférences Rapporteur Université de Reims Robin DUPONNIOS, DR, IRD Examinateur Montpellier Sabine GALINDO, Professeur
    [Show full text]
  • Xanthomonas Translucens Pv . Pistaciae
    NOV09Pathogen of the month – November 2009 ab c Fig. 1. Typical xylem staining (a) and dieback (b) associated with X. translucens pv. pistaciae infection in Pistachio; X. translucens pv. pistaciae on Sucrose Peptone Agar (c). Photo credits C. Taylor (a, b) and A. Salowi (c) Disease: Pistachio Dieback Classification: D: Bacteria, C: Gammaproteobacteria, O: Xanthomonadales, F: Xanthomonadaceae . pistaciae Xanthomonas translucens pv. pistaciae is the causal agent of dieback of Pistachio (Pistacia vera, Anacardiaceae). The disease is endemic to Australia and is characterised by trunk and limb lesions, excessive resin exudates, discolouration of mature xylem (Fig. 1a), stunted growth and shoot dieback (Fig. pv 1b). Affected trees gradually decline, fail to produce marketable nuts and eventually die. The first outbreak of the disease occurred with the onset of commercial production in the mid-late 1990s, killing or rendering unproductive up to 10% of the trees. Another serious outbreak occurred recently in 2005. The pathogen Detection X. translucens pv. pistaciae has recently been X. translucens pv. pistaciae produces typical yellow classified as a new pathovar of X. translucens on the slimy colonies (Fig. 1c) that are useful for diagnostic basis of several biological, biochemical and purposes. Multiplex PCR and RT-PCR are also molecular criteria, including its distinct pathogenicity available that detect and distinguish the two groups of to Pistachio. Two groups, A and B, biologically and the Pistachio pathogen. These methods have been genetically distinct, coexist in Australian orchards but optimised for use with a wide range of infected only group A is widespread. material. RT-PCR is the more sensitive, allowing Host range detection in asymptomatic trees.
    [Show full text]
  • Comparative Genomics Identifies a Novel Conserved Protein, Hpat, In
    fmicb-08-01177 June 23, 2017 Time: 16:54 # 1 ORIGINAL RESEARCH published: 26 June 2017 doi: 10.3389/fmicb.2017.01177 Comparative Genomics Identifies a Novel Conserved Protein, HpaT, in Proteobacterial Type III Secretion Systems that Do Not Possess the Putative Translocon Protein HrpF Céline Pesce1,2, Jonathan M. Jacobs1,2, Edwige Berthelot1, Marion Perret1, Taca Vancheva1,2, Claude Bragard2 and Ralf Koebnik1* 1 UMR 186 IRD-Cirad-Université Montpellier IPME, Montpellier, France, 2 Applied Microbiology Phytopathology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium Xanthomonas translucens is the causal agent of bacterial leaf streak, the most common bacterial disease of wheat and barley. To cause disease, most xanthomonads depend on a highly conserved type III secretion system, which translocates type III effectors into host plant cells. Mutagenesis of the conserved type III secretion gene hrcT confirmed Edited by: Richard Berthomé, that the X. translucens type III secretion system is required to cause disease on the INRA Centre Occitanie-Toulouse, host plant barley and to trigger a non-host hypersensitive response (HR) in pepper France leaves. Type III effectors are delivered to the host cell by a surface appendage, the Reviewed by: Hrp pilus, and a translocon protein complex that inserts into the plant cell plasma Brian H. Kvitko, University of Georgia, United States membrane. Homologs of the Xanthomonas HrpF protein, including PopF from Ralstonia Hai-Lei Wei, solanacearum and NolX from rhizobia, are thought to act as a translocon protein. Cornell University, United States Comparative genomics revealed that X. translucens strains harbor a noncanonical *Correspondence: Ralf Koebnik hrp gene cluster, which rather shares features with type III secretion systems from [email protected] Ralstonia solanacearum, Paraburkholderia andropogonis, Collimonas fungivorans, and Uliginosibacterium gangwonense than other Xanthomonas spp.
    [Show full text]
  • Tackling the Current Limitations of Bacterial Taxonomy with Genome-Based Classification and Identification on a Crowdsourcing Web Service
    Tackling the Current Limitations of Bacterial Taxonomy with Genome-Based Classification and Identification on a Crowdsourcing Web Service Long Tian Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Genetics, Bioinformatics, and Computational Biology Boris A. Vinatzer, Chair Lenwood S. Heath, Chair Paul Marek, Member Liqing Zhang, Member August 16, 2019 Blacksburg, VA Keywords: Bacterial taxonomy, average nucleotide identity, ANI, min-wise independent permutations, locality sensitive hashing, MinHash, Web service, crowdsourcing CC BY-NC-ND Tackling the current limitations of bacterial taxonomy with genome-based classification and identification with a crowdsourcing Web service Long Tian ABSTRACT Bacterial taxonomy is the science of classifying, naming, and identifying bacteria. The scope and practice of taxonomy has evolved through history with our understanding of life and our growing and changing needs in research, medicine, and industry. As in animal and plant taxonomy, the species is the fundamental unit of taxonomy, but the genetic and phenotypic diversity that exists within a single bacterial species is substantially higher compared to animal or plant species. Therefore, the current “type”-centered classification scheme that describes a species based on a single type strain is not sufficient to classify bacterial diversity, in particular in regard to human, animal, and plant pathogens, for which it is necessary to trace disease outbreaks back to their source. Here we discuss the current needs and limitations of classic bacterial taxonomy and introduce LINbase, a Web service that not only implements current species-based bacterial taxonomy but complements its limitations by providing a new framework for genome sequence-based classification and identification independently of the type-centric species.
    [Show full text]