Chapter 7. Convection and Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7. Convection and Complexity Chapter 7 Convection and complexity ... if your theory is found to be convection has been taken as the classic exam­ against the second law of ple of thermal convection, and the hexagonal planform has been considered to be typical of thermodynamics, I can give you no convective patterns at the onset of thermal con­ hope; there is nothing for it but to vection. Fifty years went by before it was real­ collapse in deepest humiliation. ized that Benard's patterns were actually driven from above, by surface tension. not from below by Eddington an unstable thermal boundary layer. Experiments Contrary to current textbooks ... the showed the san1.e style of convection when the fluid was heated from above, cooled from below observed world does not proceed or when performed in the absence of gravity. This from lower to higher "degrees of confirmed the top-down surface-driven nature of disorder", since when all the convection which is now called Marangoni or B€mard-Marangoni convection. gravitationally-induced phenomena Although it is not generally recognized as are taken into account the emerging such, mantle convection is a branch of the newly result indicates a net decrease in the renamed science of complexity. Plate tectonics may be a self-drivenfarjrom-equilibrium system that orga­ "degrees of disorder", a greater nizes itself by dissipation in and between the "degree of structuring" ... classical plates, the mantle being a passive provider of equilibrium thermodynamics ... has energy and material. Far-from-equilibrium sys­ to be completed by a theory of tems, particularly those in a gravity field, can locally evolve toward a high degree of order. Plate 'creation of gravitationally-induced tectonics was once regarded as passive motion of structures' ... plates on top of mantle convection cells but it now appears that continents and plate tecton­ Gal-or ics organize the flow in the mantle. But man­ tle convection and plate tectonics involve more Overview than geometry and space-filling considerations. The mantle is a heat engine, controlled by the In 1900 Henri Benard heated whale oil in a laws of thermodynamics. One can go just so pan and noted a system of hexagonal convec­ far without physics. Conservation of mass and tion cells. Lord Rayleigh in 1916 analyzed energy are involved, as are balancing of forces. this in terms of the instability of a fluid heated Although the mantle behaves as a fluid, mineral from below. Since that time Rayleigh-Bemard physics principles and classical solid-state physics 74 CONVECTION AND C O MPLE XITY are needed to understand this fluid. The effect mant l e as convenient shorthand for wh at they of pressure suppresses the role of the lower ther­ consider to be the h omo g e n ou s upper mant l e. mal boundary layer at the core-mantle-boundary The u nderlying assumption is that midocean (CMB) interface. ridge basalts, known for their chemical homo­ The slow uplift of the surface of the Earth geneity, must come from a well-stirred mantle in response to the removal of an ice cap or reservoir. drainage of a large lake changes the shape of the Earth and the geoid; this is not only proof of the fluid-like behavior of the mantle but also pro­ Generalities vides the data for estimating its viscosity. In con­ trast to everyday experience mantle convection SOFFE systems are ext raordinarily sen ­ has some unusual characteristics. The container s i tive to boundary and initial conditions. has spherical geometry. The 'fluid' has stress-, The corollary is that small differences between pressure- and temperature-dependent properties. computer or laboratory simulations, or between It is cooled from above and from within (slabs) th em and the mantle, can completely change and heated from within (radioactivity) and the outcome. The effect of pressure suppresses from below (cooling of the core and crystalliza­ the role of the lower thermal boundary layer tion of the inner core). The boundary conditions (TBL) at the core-mantle-boundary (CMB) inter­ and heat sources change with time. Melting and face. The state of stress in the lithosphere defines phase changes contribute to the buoyancy and the plates, plate boundaries and locations of mid­ provide additional heat sources and sinks. Mantle plate volcanism. Fluctuations in stress, due to convection is driven partly by plate motions and changing boundary conditions, are responsible partly by chemical buoyancy. The boundaries are for global plate reorganizations and evolution deformable rather than rigid. None of these char­ of volcanic chains. In Rayleigh -BEmard con­ acteristics are fully treated in numerical calcu­ vecti on, by contrast, temperature fluctuations lations, and we are therefore woefully ignorant are the important parameters. In plume theory, of the style of convection to be expected in the plates break where heated or uplifted by hot mantle. The cooling plates may well organize and buoyant upwellings. Ironically, the fluid flows in drive mantle convection, as well as themselves. A the experi men ts by Benard, which motivated mantle with continents on top will convect dif­ the Rayleigh theory of t h ermal convec­ ferently from one with no continents. tion, were driven by surface tension, i.e. stresses The theory of convection in the mantle can­ at the surface. not be decoupled from the theories of solids Computer simulations of mantle convection and petrology. The non-Newtonian rheology, the have not yet included a self-consistent thermo­ pressure and temperature sensitivity of viscosity, dynamic treatment of the effect of temperature, thermal expansion, and thermal conductivity, pressure, melting and volume on the physical and the effects of phase changes and compress­ and thermal properties; understanding of the ibility make it dangerous to rely too much on 'exterior' problem (the surface boundary con­ the intuition provided by oversimplified fluid­ dition) is in its infancy. Plate tectonics itself dynamic calculations or labora tory experiments. is implicated in the surface boundary condi­ There are, however, some general characteris­ tion. Sphericity, pressure and the distribution of tics of convection that transcend these details. radioactivity break the symmetry of the prob­ Technical details of normal or classical thermal lem and the top and bottom boundary condi­ convection can be found in textb ooks on man­ tions play quite different roles than in the simple t l e convection. Plate tectonics and mantle calculations and cartoons of mantle dynam­ motions, however, are far from normal thermal ics and geochemical reservoirs. Conventional convection. (Rayleigh- Benard) convection theory may have lit­ Geochemists consider convection and stir­ tle to do with plate tectonics. The research oppor­ ring to be equivalent. They use convecting tunities are enormous. GENERALITIES 75 The history of ideas Aegean plate is an example of a ' rigid' plate col­ Convection can be driven by bottom heating, lapsing, or falling apart, because of changes in top or side cooling, and by motions of the stress conditions. boundaries. Although the role of the surface The mantle is generally considered to convect boundary layer and slab-pull are now well under­ as a single layer (whole mantle convection), or at stood and the latter is generally accepted as most two. However, the mantle is more likely to the prime mover in plate tectonics, there is a convect in multiple layers as a result of gravita­ widespread perception that active hot upwellings tional sorting during accretion, and the density from deep in the interior of the planet, inde­ difference between the mantle products of differ­ pendent of plate tectonics, are responsible for entiation. 'extraordinary' events such as plate reorganiza­ tion, continental break-up, extensive magmatism. Instabilities and events far away from current plate bound­ Rayleigh-Taylor (RT) instabilities form when a aries. Active upwellings from deep in the mantle dense, heavy fluid occurs above a low-density are viewed as controlling some aspects of surface fluid, such as a layer of dense oil placed, care­ tectonics and volcanism, including reorganiza­ fully, on top of a layer of water. Two plane­ tion, implying that the mantle is not passive. This parallel layers of immiscible fluid are stable, is called the plume mode of mantle convec­ but the slightest perturbation leads to release of tion. This has been modeled by the injection of potential energy, as the heavier material moves hot fluids into the base of a tank of motionless down under the (effective) gravitational field, and fluid. the lighter material is displaced upwards. As Numerical experiments show that mantle the instability develops, downward-moving dim­ convection is controlled from the top by con­ ples are quickly magnified into sets of inter­ tinents, cooling lithosphere, slabs and plate penetrating RT fingers or plumes. This process motions and that plates not only drive and is evident not only in many examples, from boil­ break themselves but can control and reverse ing water to weather inversions. In mantle geo­ convection in the mantle. Studies of the physics, plumes are often modeled by inserting a time dependence in 3D spherical mantle light fluid into a tank of a static higher density convection with continental drift show fluid. This is meant to mimic the instability of a the extreme sensitivity to changes of conditions hot basal layer. In the later situation, the insta­ and give results quite different from simpler sim­ bility develops naturally and the density con­ ulations. Supercontinents and other large plates trast is limited. In the injection experiment, the generate spatial and temporal temperature vari­ density contrast is imposed by the experimenter, ations. The migration of continents, ridges and as is the scale of the upwelling. There is a dif­ trenches cause a constantly changing surface ference between upwellings of intrinsically hot boundary condition, and the underlying man­ basal layers and intrinsically light chemical lay­ tle responds passively.
Recommended publications
  • Chapter 6 Natural Convection in a Large Channel with Asymmetric
    Chapter 6 Natural Convection in a Large Channel with Asymmetric Radiative Coupled Isothermal Plates Main contents of this chapter have been submitted for publication as: J. Cadafalch, A. Oliva, G. van der Graaf and X. Albets. Natural Convection in a Large Channel with Asymmetric Radiative Coupled Isothermal Plates. Journal of Heat Transfer, July 2002. Abstract. Finite volume numerical computations have been carried out in order to obtain a correlation for the heat transfer in large air channels made up by an isothermal plate and an adiabatic plate, considering radiative heat transfer between the plates and different inclination angles. Numerical results presented are verified by means of a post-processing tool to estimate their uncertainty due to discretization. A final validation process has been done by comparing the numerical data to experimental fluid flow and heat transfer data obtained from an ad-hoc experimental set-up. 111 112 Chapter 6. Natural Convection in a Large Channel... 6.1 Introduction An important effort has already been done by many authors towards to study the nat- ural convection between parallel plates for electronic equipment ventilation purposes. In such situations, since channels are short and the driving temperatures are not high, the flow is usually laminar, and the physical phenomena involved can be studied in detail both by means of experimental and numerical techniques. Therefore, a large experience and much information is available [1][2][3]. In fact, in vertical channels with isothermal or isoflux walls and for laminar flow, the fluid flow and heat trans- fer can be described by simple equations arisen from the analytical solutions of the natural convection boundary layer in isolated vertical plates and the fully developed flow between two vertical plates.
    [Show full text]
  • Forced and Natural Convection
    FORCED AND NATURAL CONVECTION Forced and natural convection ...................................................................................................................... 1 Curved boundary layers, and flow detachment ......................................................................................... 1 Forced flow around bodies .................................................................................................................... 3 Forced flow around a cylinder .............................................................................................................. 3 Forced flow around tube banks ............................................................................................................. 5 Forced flow around a sphere ................................................................................................................. 6 Pipe flow ................................................................................................................................................... 7 Entrance region ..................................................................................................................................... 7 Fully developed laminar flow ............................................................................................................... 8 Fully developed turbulent flow ........................................................................................................... 10 Reynolds analogy and Colburn-Chilton's analogy between friction and heat
    [Show full text]
  • Convectional Heat Transfer from Heated Wires Sigurds Arajs Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1957 Convectional heat transfer from heated wires Sigurds Arajs Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physics Commons Recommended Citation Arajs, Sigurds, "Convectional heat transfer from heated wires " (1957). Retrospective Theses and Dissertations. 1934. https://lib.dr.iastate.edu/rtd/1934 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. CONVECTIONAL BEAT TRANSFER FROM HEATED WIRES by Sigurds Arajs A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR 01'' PHILOSOPHY Major Subject: Physics Signature was redacted for privacy. In Chapge of K or Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean of Graduate College Iowa State College 1957 ii TABLE OF CONTENTS Page I. INTRODUCTION 1 II. THEORETICAL CONSIDERATIONS 3 A. Basic Principles of Heat Transfer in Fluids 3 B. Heat Transfer by Convection from Horizontal Cylinders 10 C. Influence of Electric Field on Heat Transfer from Horizontal Cylinders 17 D. Senftleben's Method for Determination of X , cp and ^ 22 III. APPARATUS 28 IV. PROCEDURE 36 V. RESULTS 4.0 A. Heat Transfer by Free Convection I4.0 B. Heat Transfer by Electrostrictive Convection 50 C.
    [Show full text]
  • Forced Convection Heat Transfer Convection Is the Mechanism of Heat Transfer Through a Fluid in the Presence of Bulk Fluid Motion
    Forced Convection Heat Transfer Convection is the mechanism of heat transfer through a fluid in the presence of bulk fluid motion. Convection is classified as natural (or free) and forced convection depending on how the fluid motion is initiated. In natural convection, any fluid motion is caused by natural means such as the buoyancy effect, i.e. the rise of warmer fluid and fall the cooler fluid. Whereas in forced convection, the fluid is forced to flow over a surface or in a tube by external means such as a pump or fan. Mechanism of Forced Convection Convection heat transfer is complicated since it involves fluid motion as well as heat conduction. The fluid motion enhances heat transfer (the higher the velocity the higher the heat transfer rate). The rate of convection heat transfer is expressed by Newton’s law of cooling: q hT T W / m 2 conv s Qconv hATs T W The convective heat transfer coefficient h strongly depends on the fluid properties and roughness of the solid surface, and the type of the fluid flow (laminar or turbulent). V∞ V∞ T∞ Zero velocity Qconv at the surface. Qcond Solid hot surface, Ts Fig. 1: Forced convection. It is assumed that the velocity of the fluid is zero at the wall, this assumption is called no‐ slip condition. As a result, the heat transfer from the solid surface to the fluid layer adjacent to the surface is by pure conduction, since the fluid is motionless. Thus, M. Bahrami ENSC 388 (F09) Forced Convection Heat Transfer 1 T T k fluid y qconv qcond k fluid y0 2 y h W / m .K y0 T T s qconv hTs T The convection heat transfer coefficient, in general, varies along the flow direction.
    [Show full text]
  • Chaotic Flow in a 2D Natural Convection Loop
    International Journal of Heat and Mass Transfer 61 (2013) 565–576 Contents lists available at SciVerse ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt Chaotic flow in a 2D natural convection loop with heat flux boundaries ⇑ William F. Louisos a,b, , Darren L. Hitt a,b, Christopher M. Danforth a,c a College of Engineering & Mathematical Sciences, The University of Vermont, Votey Building, 33 Colchester Avenue, Burlington, VT 05405, United States b Mechanical Engineering Program, School of Engineering, The University of Vermont, Votey Building, 33 Colchester Avenue, Burlington, VT 05405, United States c Department of Mathematics & Statistics, Vermont Complex Systems Center, Vermont Advanced Computing Core, The University of Vermont, Farrell Hall, 210 Colchester Avenue, Burlington, VT 05405, United States article info abstract Article history: This computational study investigates the nonlinear dynamics of unstable convection in a 2D thermal Received 13 August 2012 convection loop (i.e., thermosyphon) with heat flux boundary conditions. The lower half of the thermosy- Received in revised form 1 February 2013 phon is subjected to a positive heat flux into the system while the upper half is cooled by an equal-but- Accepted 3 February 2013 opposite heat flux out of the system. Water is employed as the working fluid with fully temperature dependent thermophysical properties and the system of governing equations is solved using a finite vol- ume method. Numerical simulations are performed for varying levels of heat flux and varying strengths Keywords: of gravity to yield Rayleigh numbers ranging from 1.5 Â 102 to 2.8 Â 107.
    [Show full text]
  • Enhancement of Natural Convection Heat Transfer Coefficient by Using V-Fin Array
    International Journal of Engineering Research and General Science Volume 3, Issue 2, March-April, 2015 ISSN 2091-2730 Enhancement of Natural convection heat transfer coefficient by using V-fin array Rameshwar B. Hagote, Sachin K. Dahake Student of mechanical Engg. Department, MET’s IOE, Adgaon, Nashik (Maharashtra,India). Email. Id: [email protected], Contact No. +919730342211 Abstract— Extended surfaces known as fins are, used to enhance convective heat transfer in a wide range of engineering applications, and offer an economical and trouble free solution in many situations demanding natural convection heat transfer. Fin arrays on horizontal, inclined and vertical surfaces are used in variety of engineering applications to dissipate heat to the surroundings. Studies of heat transfer and fluid flow associated with such arrays are therefore of considerable engineering significance. The main controlling variables generally available to the designer are the orientation and the geometry of the fin arrays. An experimental work on natural convection adjacent to a vertical heated plate with a multiple V- type partition plates (fins) in ambient air surrounding is already done. Boundary layer development makes vertical fins inefficient in the heat transfer enhancement. As compared to conventional vertical fins, this V-type partition plate works not only as extended surface but also as flow turbulator. This V-type partition plate is compact and hence highly economical. The numerical analysis of this technique is done using Computational Fluid Dynamics (CFD) software, Ansys CFX , for natural convection adjacent to a vertical heated plate in ambient air surrounding. In numerical analysis angle of V-fin is further optimized for maximum average heat transfer coefficient.
    [Show full text]
  • Convective Mass Transfer Correlations 5.9 Fluid Flow Through Pipes 5.10 Hot Wire Anemometer
    SCH1309 TRANSPORT PHENOMENA UNIT-V UNIT 5: Analogies for Transport processes Contents 5.1 Analogy for mass transfer 5.2 Application of dimensional analysis 5.3 Analogy among Mass, Heat and Momentum Transfer 5.4 Reynolds Analogy 5.5 Chilton Colburn analogy 5.6 Prandtl analogy 5.7 VanKarman analogy 5.8 Convective mass transfer correlations 5.9 Fluid flow through pipes 5.10 Hot wire anemometer 1 SCH1309 TRANSPORT PHENOMENA UNIT-V 5.1 Analogy of Mass Transfer Mass transfer by convection involves the transport of material between a boundary surface (such as solid or liquid surface) and a moving fluid or between two relatively immiscible, moving fluids. There are two different cases of convective mass transfer: 1. Mass transfer takes place only in a single phase either to or from a phase boundary, as in sublimation of naphthalene (solid form) into the moving air. 2. Mass transfer takes place in the two contacting phases as in extraction and absorption. Convective Mass Transfer Coefficient In the study of convective heat transfer, the heat flux is connected to heat transfer coefficient as Q A q h t s t m -------------------- (1.1) The analogous situation in mass transfer is handled by an equation of the form N A k c C As C A -------------------- (1.2) The molar flux N A is measured relative to a set of axes fixed in space. The driving force is the difference between the concentration at the phase boundary, CAS (a solid surface or a fluid interface) and the concentration at some arbitrarily defined point in the fluid medium, C A .
    [Show full text]
  • A Numerical Study of Natural Convection Properties of Supercritical Water (H2O) Using Redlich–Kwong Equation of State
    Sådhanå (2019) 44:37 Ó Indian Academy of Sciences https://doi.org/10.1007/s12046-018-1035-3Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) A numerical study of natural convection properties of supercritical water (H2O) using Redlich–Kwong equation of state HUSSAIN BASHA1, G JANARDHANA REDDY1,* and N S VENKATA NARAYANAN2 1 Department of Mathematics, Central University of Karnataka, Kalaburagi 585 367, India 2 Department of Chemistry, Central University of Karnataka, Kalaburagi 585 367, India e-mail: [email protected]; [email protected]; [email protected] MS received 8 January 2018; revised 2 November 2018; accepted 16 November 2018; published online 25 January 2019 Abstract. In this article, the Crank-Nicolson implicit finite difference method is utilized to obtain the numerical solutions of highly nonlinear coupled partial differential equations (PDEs) for the flow of supercritical fluid (SCF) over a vertical flat plate. Based on the equation of state (EOS) approach, suitable equations are derived to calculate the thermal expansion coefficient (b) values. Redlich–Kwong equation of state (RK-EOS), Peng-Robinson equation of state (PR-EOS), Van der Waals equation of state (VW-EOS) and Virial equation of state (Virial-EOS) are used in this study to evaluate b values. The calculated values of b based on RK-EOS is closer to the experimental values, which shows the greater accuracy of the RK-EOS over PR-EOS, VW-EOS and Virial-EOS models. Numerical simulations are performed for H2O in three regions namely subcritical, supercritical and near critical regions. The unsteady velocity, temperature, average heat and momentum transport coefficients for different values of reduced pressure and reduced temperature are discussed based on the numerical results and are shown graphically across the boundary layer.
    [Show full text]
  • Viscosity Variation Effects on Heat Transfer and Fluid Flow Through Two-Layered Porous Media
    Journal of ChemicalBahadori Technology Fatemeh, and Sima Metallurgy, Rezvantalab 50, 1, 2015, 35-38 VISCOSITY VARIATION EFFECTS ON HEAT TRANSFER AND FLUID FLOW THROUGH TWO-LAYERED POROUS MEDIA Bahadori Fatemeh, Sima Rezvantalab Chemical Engineering Department, Received 10 June 2014 Urmia University of Technology, Urmia, Iran Accepted 24 November 2014 E-mail: [email protected] ABSTRACT Temperature dependent viscosity effects on natural convection in a composite cavity, isothermally heated from below and cooled from the opposing surface, are analyzed. The two-layered porous media was composed of two regions with different permeability. It is observed that viscosity reduction, due to temperature rising, affects heat transfer rate and fluid motion at the interface. Keywords: two layered porous media, viscosity, heat transfer, permeability ratio (Kr), streamline. INTRODUCTION tion for calculation of the overall Nusselt number for N horizontal sub layers. Lai and Kulacki [13] discussed Heat transfer in porous media has been extensively convection in a vertically divided rectangular cavity, of studied due to its numerous engineering and environ- the right hand side wall which was heated with constant mental applications. Oil recovery, underground spread heat flux. of pollutants, grain storage, geothermal systems, solar Egorov and Polezhaev [14] investigated a theoretical power collectors, optimal design of furnaces, compact model and showed that their numerical results are in the heat exchangers, packed-bed catalytic reactors and pas- line of their experimental data for multilayer insulation. sive thermal control devices are examples of applications In addition, Merrikh and Mohamad [15], Belghazi et al. of heat transfer in porous media. [16] and Ordo´n˜ez-Miranda and Alvarado-Gil [17] and Studies concerning natural convection in porous others, have investigated multilayered porous media.
    [Show full text]
  • Interferometric Study of Natural Convection Heat Transfer from a Vertical Flat Plate with Transverse Roughness Elements Sushil Hiroo Bhavnani Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 Interferometric study of natural convection heat transfer from a vertical flat plate with transverse roughness elements Sushil Hiroo Bhavnani Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mechanical Engineering Commons Recommended Citation Bhavnani, Sushil Hiroo, "Interferometric study of natural convection heat transfer from a vertical flat plate with transverse roughness elements " (1987). Retrospective Theses and Dissertations. 11669. https://lib.dr.iastate.edu/rtd/11669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Investigation of the Natural Convection Boundary Condition in Microfabricated Structures
    International Journal of Thermal Sciences 47 (2008) 820–824 www.elsevier.com/locate/ijts Investigation of the natural convection boundary condition in microfabricated structures X. Jack Hu ∗, Ankur Jain 1, Kenneth E. Goodson Mechanical Engineering Department, Stanford University, Stanford, CA 94305, USA Received 26 March 2007; received in revised form 17 July 2007; accepted 18 July 2007 Available online 30 August 2007 Abstract Heat loss through surrounding air has an important thermal effect on microfabricated structures. This effect is generally modeled as a natural convection boundary condition. However, the correct procedure for the determination of the convective coefficient (h) at microscales continues to be debated. In this paper, a microheater is fabricated on a suspended thin film membrane. The natural convection on the microheater is investigated using 3-omega measurements and complex analytical modeling. It is found that the value of h that fits experimental data should have an apparently larger value than that at larger scales; however, it is also shown that the increased h is actually contributed by heat conduction instead of heat convection. A method of determining the correct h that can be used for microfabricated structures is proposed by using the heat conduction shape factor. © 2007 Elsevier Masson SAS. All rights reserved. Keywords: Microscale natural convection; Convective coefficient; 3-omega measurement; Micro-Electrical–Mechanical-System (MEMS) device; Micro fabricated structure; Microscale heat transfer 1. Introduction the relative change of importance of driving forces at the mi- croscale. Peirs et al. [1] have proposed a scaling law for natural 2 Natural convection is a frequently encountered boundary convective coefficient and suggested h ∼ 100 W/m K for air condition in the thermal design, testing and modeling of Micro- when the scale is less than 100 µm, which is 5–10 times larger Electrical–Mechanical-System (MEMS) devices.
    [Show full text]
  • Study of Heat Transfer Phenomenon During Natural Convection
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2016 Study of heat transfer phenomenon during natural convection Muhammad Yousaf Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Chemical Engineering Commons, and the Nuclear Engineering Commons Department: Nuclear Engineering and Radiation Science Recommended Citation Yousaf, Muhammad, "Study of heat transfer phenomenon during natural convection" (2016). Doctoral Dissertations. 2494. https://scholarsmine.mst.edu/doctoral_dissertations/2494 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. STUDY OF HEAT TRANSFER PHENOMENON DURING NATURAL CONVECTION by MUHAMMAD YOUSAF A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in NUCLEAR ENGINEERING 2016 Approved by: Shoaib Usman, Advisor Ayodeji B. Alajo Joshua P. Schlegel Joseph D. Smith Muthanna H. Al-Dahhan ii 2016 Muhammad Yousaf All Rights Reserved iii PUBLICATION DISSERTATION OPTION This dissertation has been prepared in the style utilized by International Journal of Heat and Mass Transfer. These pages consist of three separate papers (i.e. Paper I (4-46), Paper II (Pages 47-79), and Paper III (Pages 80-117)). Papers I and II have been submitted for publication, while Paper III has been published in the said journal. iv ABSTRACT The purpose of the present study was to numerically investigate the effects of the roughness elements on the heat transfer during natural convection.
    [Show full text]