Networks Beyond Pairwise Interactions: Structure and Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Networks Beyond Pairwise Interactions: Structure and Dynamics Networks beyond pairwise interactions: structure and dynamics Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania, Jean-Gabriel Young, Giovanni Petri To cite this version: Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, et al.. Networks beyond pairwise interactions: structure and dynamics. Physics Reports, Elsevier, 2020, 874, pp.1-92. 10.1016/j.physrep.2020.05.004. hal-03094211 HAL Id: hal-03094211 https://hal.archives-ouvertes.fr/hal-03094211 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Networks beyond pairwise interactions: structure and dynamics Federico Battiston∗ Department of Network and Data Science, Central European University, Budapest 1051, Hungary Giulia Cencetti Mobs Lab, Fondazione Bruno Kessler, Via Sommarive 18, 38123, Povo, TN, Italy Iacopo Iacopini School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom and Centre for Advanced Spatial Analysis, University College London, London, W1T 4TJ, United Kingdom Vito Latora† School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Dipartimento di Fisica ed Astronomia, Universit`adi Catania and INFN, I-95123 Catania, Italy The Alan Turing Institute, The British Library, London NW1 2DB, United Kingdom and Complexity Science Hub Vienna (CSHV), Vienna, Austria Maxime Lucas Aix Marseille Univ, CNRS, CPT, Turing Center for Living Systems, Marseille, France Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France and Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Turing Center for Living Systems, Marseille, France Alice Patania Network Science Institute, Indiana University, Bloomington, IN, USA Jean-Gabriel Young Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA, 48109 Giovanni Petri‡ ISI Foundation, via Chisola 5, 10126 Turin, Italy and ISI Global Science Foundation, 33 W 42nd St, 10036 New York NY, USA (Dated: June 3, 2020) The complexity of many biological, social and technological systems stems from the richness of the interactions among their units. Over the past decades, a great variety of complex systems has been successfully described as networks whose interacting pairs of nodes are connected by links. Yet, in face-to-face human communication, chemical reactions and ecological systems, interactions can occur in groups of three or more nodes and cannot be simply described just in terms of simple dyads. Until recently, little attention has been devoted to the higher-order architecture of real complex systems. However, a mounting body of evidence is showing that taking the higher-order structure of these systems into account can greatly enhance our modeling capacities and help us to understand and predict their emerging dynamical behaviors. Here, we present a complete overview of the emerging field of networks beyond pairwise interactions. We first discuss the methods to represent higher-order interactions and give a unified presentation of the different frameworks used to describe higher-order systems, highlighting the links between the existing concepts and representations. We review both the measures designed to characterize the structure of these systems, and the models proposed in the literature to generate synthetic structures, such as random and growing simplicial complexes, bipartite graphs and hypergraphs. We then introduce and discuss the rapidly growing research on arXiv:2006.01764v1 [physics.soc-ph] 2 Jun 2020 higher-order dynamical systems and on dynamical topology. We focus on novel emergent phenomena characterizing landmark dynamical processes, such as diffusion, spreading, synchronization and games, when extended beyond pairwise interactions. We elucidate the relations between higher- order topology and dynamical properties, and conclude with a summary of empirical applications, providing an outlook on current modeling and conceptual frontiers. ∗ [email protected][email protected][email protected] 2 CONTENTS I. Introduction 3 II. Higher-order representations of networks5 A. Elementary representations of higher-order interactions5 1. Low- versus high-order representations5 2. Graph-based representations5 3. Explicit higher-order representations7 B. Relations and links between representations8 III. Measures 9 A. Matrix representations of higher-order systems 10 1. Incidence matrix 10 2. Adjacency matrix 10 B. Walks, paths and centrality measures 11 1. Degree centralities 11 2. Paths and path-based centralities 13 3. Eigenvector centralities 14 C. Triadic closure and clustering coefficient 15 D. Simplicial homology 16 1. Boundary operators and homology groups 16 2. Evolving simplicial complexes 16 3. Other measures of shape in simplicial complexes 17 E. Higher-order Laplacian operators 17 1. Hypergraph Laplacians 18 2. Combinatorial Laplacians 18 IV. Models 20 A. Equilibrium models 21 1. Bipartite models 21 2. Motifs models 24 3. Stochastic set models 25 4. Hypergraphs models 27 5. Simplicial complexes models 29 B. Out-of-equilibrium models 31 1. Bipartite models 32 2. Stochastic set models 33 3. Hypergraphs models 33 4. Simplicial complexes models 34 V. Diffusion 36 A. Higher-order diffusion 37 1. Edge-flows 38 B. Higher-order random walks 39 1. Random walks on simplicial complexes 39 2. Random walks on hypergraphs 40 VI. Synchronization 43 A. Phase oscillators 43 1. Higher-order Kuramoto model 43 2. Higher-order interactions from phase reduction 50 B. Nonlinear oscillators 52 1. Chaotic oscillators 52 2. Neuron models 53 C. Inference of nonpairwise interactions in coupled oscillators 55 VII. Spreading and social dynamics 57 A. Spreading in higher-order networks 57 3 1. Spreading on simplicial complexes 58 2. Spreading on hypergraphs 59 B. Opinion and cultural dynamics beyond pairwise interactions 61 1. Voter model 61 2. Majority models 63 3. Continuous models of opinion dynamics 64 4. Cultural dynamics 65 VIII. Evolutionary games 65 A. Multiplayer games on networks 67 1. Public goods game 67 2. Other multiplayer games 69 B. Games with higher-order interactions 69 1. Public goods game on bipartite networks 69 2. Public goods game on hypergraphs 70 IX. Applications 71 A. Social systems 72 B. Neuroscience and brain networks 75 C. Ecology 78 D. Other biological systems 83 X. Outlook and conclusions 85 Acknowledgments 87 References 88 I. INTRODUCTION Any significant understanding of a complex system must rely on system level descriptions. Consider the following exercise: take an ecosystem, and break it into its pieces. No matter how good or accurate our knowledge at the level of the individual species is, chances are that our understanding of population dynamics (e.g. how the abundances of the different species change in time) will be slim at best. The same holds true when we attempt to explain epileptic seizures starting from the individual neurons of the human brain; or viral rumors spreading across societies from individual human psychology. All these approaches fail because they are missing a fundamental ingredient of any complex system, that is the rich pattern of nonlinear interactions between the system components. After many years of reductionism, science has abandoned the idea that the collective behaviors of a complex system can be simply understood and predicted by considering the units of the system in isolation [1], and now more than ever is embracing the idea of complexity as one of the principles governing the world we live in. Within this paradigm, networks have emerged as a reference modeling tool for complex systems [2]. Networks are the maps that define the physical or virtual space where interactions take place. Add competitive and cooperative relationships to an ecosystem, synaptic connections to the human brain, and human interactions to rumor spreading, and readily the self-organizing patterns and the collective behavior we observe in nature begin to unravel and look less obscure. Building on earlier work in mathematics, social network analysis and ecology, a handful of breakthrough papers at the turn of the millennium has attracted the interest of the scientific community, triggering thousands of contributions over the last twenty years and leading to the formation of the new multidisciplinary field of Network Science. This new research community has developed an unusual mixture of graph theory and statistical mechanics into a flourishing discipline, with applications spanning the full range of science, from fundamental physics all the way to the social sciences. The boundaries and potential applications are yet to be fully realized [2]. Still, the richness in scope and tools has already made the field of networks an independent discipline, often referred to as a science of its own. The growth of network science was also strengthened by the progressively wider availability of large datasets with detailed information on social, technological and biological interactions, which provided the raw material
Recommended publications
  • Emerging Topics in Internet Technology: a Complex Networks Approach
    1 Emerging Topics in Internet Technology: A Complex Networks Approach Bisma S. Khan 1, Muaz A. Niazi *,2 COMSATS Institute of Information Technology, Islamabad, Pakistan Abstract —Communication networks, in general, and internet technology, in particular, is a fast-evolving area of research. While it is important to keep track of emerging trends in this domain, it is such a fast-growing area that it can be very difficult to keep track of literature. The problem is compounded by the fast-growing number of citation databases. While other databases are gradually indexing a large set of reliable content, currently the Web of Science represents one of the most highly valued databases. Research indexed in this database is known to highlight key advancements in any domain. In this paper, we present a Complex Network-based analytical approach to analyze recent data from the Web of Science in communication networks. Taking bibliographic records from the recent period of 2014 to 2017 , we model and analyze complex scientometric networks. Using bibliometric coupling applied over complex citation data we present answers to co-citation patterns of documents, co-occurrence patterns of terms, as well as the most influential articles, among others, We also present key pivot points and intellectual turning points. Complex network analysis of the data demonstrates a considerably high level of interest in two key clusters labeled descriptively as “social networks” and “computer networks”. In addition, key themes in highly cited literature were clearly identified as “communication networks,” “social networks,” and “complex networks”. Index Terms —CiteSpace, Communication Networks, Network Science, Complex Networks, Visualization, Data science.
    [Show full text]
  • Network Centrality) (100 Points)
    In the name of God. Sharif University of Technology Analysis of Biological Networks CE 558 Spring 2020 Dr. H.R. Rabiee Homework 3 (Network Centrality) (100 points) 1. Compute centrality of the nodes with the most and least centrality for the following network according to the following measures: • Degree • Eccentricity • Closeness • Shortest Path Betweenness 1 2. For a complete (m,n)-bipartite graph compute Katz centrality measure with α = 2mn for each node and determine which nodes have the most centrality. ( (m, n)-bipartite graph consists of two independent partitions with m and n nodes each) 3. (a) For a cycle graph prove that we don't have a central node. (The centrality of all nodes are the same). Prove it for following centrality measures. • Degree • Eccentricity • Closeness • Shortest Path Betweenness • Katz • PageRank (b) Prove that in a graph that has a full-cycle automorphism, there is no central measure. Prove it for an arbitrary centrality measure. (Note that an appropriate centrality measure only depends on the structure of the graph and not the node labels) (c) for n > 2, find a graph with n nodes that has an automorphism but the centrality of the nodes are not all equal for some measure. 1 4. Prove that for any d-regular graph, PageRank centrality measure approaches to nm CKatz as the number of steps approaches to infinity, where n is the number of nodes, m is the number of steps and CKatz is 1 the Katz centrality measure with α = d . 5. (Fast Algorithm to Calculate Shortest-Path-Betweenness Centrality Measure) Consider an arbitrary undirected graph G = (V; E).
    [Show full text]
  • Breakdown of Interdependent Directed Networks Xueming Liu, ∗ † H
    i i \"SI Appendix"" | 2015/12/23 | 9:13 | page 1 | #1 i i Supporting Information: Breakdown of interdependent directed networks Xueming Liu, ∗ y H. Eugene Stanley y and Jianxi Gao z ∗Key Laboratory of Image Information Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China,yCenter for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, and zCenter for Complex Network Research and Department of Physics, Northeastern University, Boston, MA 02115 Submitted to Proceedings of the National Academy of Sciences of the United States of America I. Notions related to interdependent networks Multiplex networks. The agents (nodes) participate in ev- Both natural and engineered complex systems are not isolated ery layer of the network simultaneously. The connections but interdependent and interconnected. Such diverse infras- among these agents in different layers represent different tructures as water supply systems, transportation networks, relationships [14, 15, 28, 29, 13, 30, 31]. For example, a fuel delivery systems, and power stations are coupled together user of online social networks can subscribe to two or more [1]. To study the interdependence between networks, Buldyrev networks and build social relationships with other users on et al. [2] developed an analytic framework based on the gener- a range of social platforms (e.g., LinkedIn for a network of ating function formalism [3, 4] and discovered that the interde- professional contacts or Facebook for a network of friends) pendence between networks sharply increases system vulner- [11, 14]. ability, because node failures in one network can lead to the Temporal networks.
    [Show full text]
  • What Metrics Really Mean, a Question of Causality and Construction in Leveraging Social Media Audiences Into Business Results: Cases from the UK Film Industry
    . Volume 10, Issue 2 November 2013 What metrics really mean, a question of causality and construction in leveraging social media audiences into business results: Cases from the UK film industry Michael Franklin, University of St Andrews, UK Summary: Digital distribution and sustained audience engagement potentially offer filmmakers new business models for responding to decreasing revenues from DVD and TV rights. Key to campaigns that aim at enrolling audiences, mitigating demand uncertainty and improving revenues, is the management of digital media metrics. This process crucially involves the interpretation of figures where a causal gap exists between some digital activity and a market transaction. This paper charts the conceptual framing methods and calculations of value necessary to manipulating and utilising the audience in a new way. The invisible aspects and mediating role of contemporary creative industries audiences is presented through empirical case study evidence from two UK feature films. Practitioners’ understanding of digital engagement metrics is shown to be a social construction involving the agency of material artefacts as powerful elements of networks that include both market entities and audiences. Keywords: Film Business; Social Media; Market Device; Valuation; Digital Engagement Introduction The affordances of digital technology for audience engagement and more direct, or dis- intermediated distribution, prompt a reappraisal of the role of audiences in the film industry. Through digital tools, most significantly through social media, audiences are made material. Audiences are interacted with, engaged, marketed to, and financially exploited often visible all their social network connections, but they are also aggregated, manipulated and exert an agency that is much less visible and plays out off-screen.
    [Show full text]
  • Models for Networks with Consumable Resources: Applications to Smart Cities Hayato Montezuma Ushijima-Mwesigwa Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2018 Models for Networks with Consumable Resources: Applications to Smart Cities Hayato Montezuma Ushijima-Mwesigwa Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Ushijima-Mwesigwa, Hayato Montezuma, "Models for Networks with Consumable Resources: Applications to Smart Cities" (2018). All Dissertations. 2284. https://tigerprints.clemson.edu/all_dissertations/2284 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Models for Networks with Consumable Resources: Applications to Smart Cities A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Computer Science by Hayato Ushijima-Mwesigwa December 2018 Accepted by: Dr. Ilya Safro, Committee Chair Dr. Mashrur Chowdhury Dr. Brian Dean Dr. Feng Luo Abstract In this dissertation, we introduce different models for understanding and controlling the spreading dynamics of a network with a consumable resource. In particular, we consider a spreading process where a resource necessary for transit is partially consumed along the way while being refilled at special nodes on the network. Examples include fuel consumption of vehicles together with refueling stations, information loss during dissemination with error correcting nodes, consumption of ammunition of military troops while moving, and migration of wild animals in a network with a limited number of water-holes. We undertake this study from two different perspectives. First, we consider a network science perspective where we are interested in identifying the influential nodes, and estimating a nodes’ relative spreading influence in the network.
    [Show full text]
  • A Network-Of-Networks Percolation Analysis of Cascading Failures in Spatially Co-Located Road-Sewer Infrastructure Networks
    Physica A 538 (2020) 122971 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks ∗ ∗ Shangjia Dong a, , Haizhong Wang a, , Alireza Mostafizi a, Xuan Song b a School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, United States of America b Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China article info a b s t r a c t Article history: This paper presents a network-of-networks analysis framework of interdependent crit- Received 26 September 2018 ical infrastructure systems, with a focus on the co-located road-sewer network. The Received in revised form 28 May 2019 constructed interdependency considers two types of node dynamics: co-located and Available online 27 September 2019 multiple-to-one dependency, with different robustness metrics based on their function Keywords: logic. The objectives of this paper are twofold: (1) to characterize the impact of the Co-located road-sewer network interdependency on networks' robustness performance, and (2) to unveil the critical Network-of-networks percolation transition threshold of the interdependent road-sewer network. The results Percolation modeling show that (1) road and sewer networks are mutually interdependent and are vulnerable Infrastructure interdependency to the cascading failures initiated by sewer system disruption; (2) the network robust- Cascading failure ness decreases as the number of initial failure sources increases in the localized failure scenarios, but the rate declines as the number of failures increase; and (3) the sewer network contains two types of links: zero exposure and severe exposure to liquefaction, and therefore, it leads to a two-phase percolation transition subject to the probabilistic liquefaction-induced failures.
    [Show full text]
  • Multilayer Networks
    Journal of Complex Networks (2014) 2, 203–271 doi:10.1093/comnet/cnu016 Advance Access publication on 14 July 2014 Multilayer networks Mikko Kivelä Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK Alex Arenas Departament d’Enginyeria Informática i Matemátiques, Universitat Rovira I Virgili, 43007 Tarragona, Spain Marc Barthelemy Downloaded from Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France and Centre d’Analyse et de Mathématiques Sociales, EHESS, 190-198 avenue de France, 75244 Paris, France James P. Gleeson MACSI, Department of Mathematics & Statistics, University of Limerick, Limerick, Ireland http://comnet.oxfordjournals.org/ Yamir Moreno Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50018, Spain and Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain and Mason A. Porter† Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, by guest on August 21, 2014 Oxford OX2 6GG, UK and CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, UK †Corresponding author. Email: [email protected] Edited by: Ernesto Estrada [Received on 16 October 2013; accepted on 23 April 2014] In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such ‘multilayer’ features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize ‘traditional’ network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion.
    [Show full text]
  • Katz Centrality for Directed Graphs • Understand How Katz Centrality Is an Extension of Eigenvector Centrality to Learning Directed Graphs
    Prof. Ralucca Gera, [email protected] Applied Mathematics Department, ExcellenceNaval Postgraduate Through Knowledge School MA4404 Complex Networks Katz Centrality for directed graphs • Understand how Katz centrality is an extension of Eigenvector Centrality to Learning directed graphs. Outcomes • Compute Katz centrality per node. • Interpret the meaning of the values of Katz centrality. Recall: Centralities Quality: what makes a node Mathematical Description Appropriate Usage Identification important (central) Lots of one-hop connections The number of vertices that Local influence Degree from influences directly matters deg Small diameter Lots of one-hop connections The proportion of the vertices Local influence Degree centrality from relative to the size of that influences directly matters deg C the graph Small diameter |V(G)| Lots of one-hop connections A weighted degree centrality For example when the Eigenvector centrality to high centrality vertices based on the weight of the people you are (recursive formula): neighbors (instead of a weight connected to matter. ∝ of 1 as in degree centrality) Recall: Strongly connected Definition: A directed graph D = (V, E) is strongly connected if and only if, for each pair of nodes u, v ∈ V, there is a path from u to v. • The Web graph is not strongly connected since • there are pairs of nodes u and v, there is no path from u to v and from v to u. • This presents a challenge for nodes that have an in‐degree of zero Add a link from each page to v every page and give each link a small transition probability controlled by a parameter β. u Source: http://en.wikipedia.org/wiki/Directed_acyclic_graph 4 Katz Centrality • Recall that the eigenvector centrality is a weighted degree obtained from the leading eigenvector of A: A x =λx , so its entries are 1 λ Thoughts on how to adapt the above formula for directed graphs? • Katz centrality: ∑ + β, Where β is a constant initial weight given to each vertex so that vertices with zero in degree (or out degree) are included in calculations.
    [Show full text]
  • Multidimensional Network Analysis
    Universita` degli Studi di Pisa Dipartimento di Informatica Dottorato di Ricerca in Informatica Ph.D. Thesis Multidimensional Network Analysis Michele Coscia Supervisor Supervisor Fosca Giannotti Dino Pedreschi May 9, 2012 Abstract This thesis is focused on the study of multidimensional networks. A multidimensional network is a network in which among the nodes there may be multiple different qualitative and quantitative relations. Traditionally, complex network analysis has focused on networks with only one kind of relation. Even with this constraint, monodimensional networks posed many analytic challenges, being representations of ubiquitous complex systems in nature. However, it is a matter of common experience that the constraint of considering only one single relation at a time limits the set of real world phenomena that can be represented with complex networks. When multiple different relations act at the same time, traditional complex network analysis cannot provide suitable an- alytic tools. To provide the suitable tools for this scenario is exactly the aim of this thesis: the creation and study of a Multidimensional Network Analysis, to extend the toolbox of complex network analysis and grasp the complexity of real world phenomena. The urgency and need for a multidimensional network analysis is here presented, along with an empirical proof of the ubiquity of this multifaceted reality in different complex networks, and some related works that in the last two years were proposed in this novel setting, yet to be systematically defined. Then, we tackle the foundations of the multidimensional setting at different levels, both by looking at the basic exten- sions of the known model and by developing novel algorithms and frameworks for well-understood and useful problems, such as community discovery (our main case study), temporal analysis, link prediction and more.
    [Show full text]
  • A Systematic Survey of Centrality Measures for Protein-Protein
    Ashtiani et al. BMC Systems Biology (2018) 12:80 https://doi.org/10.1186/s12918-018-0598-2 RESEARCHARTICLE Open Access A systematic survey of centrality measures for protein-protein interaction networks Minoo Ashtiani1†, Ali Salehzadeh-Yazdi2†, Zahra Razaghi-Moghadam3,4, Holger Hennig2, Olaf Wolkenhauer2, Mehdi Mirzaie5* and Mohieddin Jafari1* Abstract Background: Numerous centrality measures have been introduced to identify “central” nodes in large networks. The availability of a wide range of measures for ranking influential nodes leaves the user to decide which measure may best suit the analysis of a given network. The choice of a suitable measure is furthermore complicated by the impact of the network topology on ranking influential nodes by centrality measures. To approach this problem systematically, we examined the centrality profile of nodes of yeast protein-protein interaction networks (PPINs) in order to detect which centrality measure is succeeding in predicting influential proteins. We studied how different topological network features are reflected in a large set of commonly used centrality measures. Results: We used yeast PPINs to compare 27 common of centrality measures. The measures characterize and assort influential nodes of the networks. We applied principal component analysis (PCA) and hierarchical clustering and found that the most informative measures depend on the network’s topology. Interestingly, some measures had a high level of contribution in comparison to others in all PPINs, namely Latora closeness, Decay, Lin, Freeman closeness, Diffusion, Residual closeness and Average distance centralities. Conclusions: The choice of a suitable set of centrality measures is crucial for inferring important functional properties of a network.
    [Show full text]
  • Cascading Failures in Interdependent Networks with Multiple Supply-Demand Links and Functionality Thresholds Supplementary Information M
    Cascading Failures in Interdependent Networks with Multiple Supply-Demand Links and Functionality Thresholds Supplementary Information M. A. Di Muro1,*, L. D. Valdez2,3, H. H. Aragao˜ Regoˆ 4, S. V. Buldyrev5, H.E. Stanley6, and L. A. Braunstein1,6 1Instituto de Investigaciones F´ısicas de Mar del Plata (IFIMAR)-Departamento de F´ısica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina. 2Instituto de F´ısica Enrique Gaviola, CONICET, Ciudad Universitaria, 5000 Cordoba,´ Argentina. 3Facultad de Matematica,´ Astronom´ıa, F´ısica y Computacion,´ Universidad Nacional de Cordoba,´ Cordoba,´ Argentina 4Departamento de F´ısica, Instituto Federal de Educac¸ao,˜ Cienciaˆ e Tecnologia do Maranhao,˜ Sao˜ Lu´ıs, MA, 65030-005, Brazil 5Department of Physics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA 6Center for Polymer Studies, Boston University, Boston, Massachusetts 02215, USA *[email protected] Explicit form of the functionality rules Giant component The giant component in a network is the largest connected component. Most functioning networks are completely connected, but when they experience failure, finite components—little islands of nodes— become disconnected from the giant component. A common functionality rule states that nodes in these finite components have insufficient support to remain active. Thus in addition to the nodes rendered inactive by failure, the exacerbation factor renders inactive all nodes not connected to the giant component. If network X has a degree distribution PX (k) and a fraction 1 − yX of nodes is randomly removed, the X X X exacerbation factor gX is gX (yX ) = 1 − G0 [1 − yX (1 − f¥ )], where f¥ is the probability that the branches X X X do not expand to infinity, and it satisfies the recurrent equation f¥ = G1 [1 − yX (1 − f¥ )].
    [Show full text]
  • Complex Networks in Computer Vision
    Complex networks in computer vision Pavel Voronin Shape to Network [Backes 2009], [Backes 2010a], [Backes 2010b] Weights + thresholds Feature vectors Features = characteris>cs of thresholded undirected binary networks: degree or joint degree (avg / min / max), avg path length, clustering coefficient, etc. Mul>scale Fractal Dimension Properes • Only uses distances => rotaon invariant • Weights normalized by max distance => scale invariant • Uses pixels not curve elements => robust to noise and outliers => applicable to skeletons, mul>ple contours Face recogni>on [Goncalves 2010], [Tang 2012a] Mul>ple binarizaon thresholds Texture to Network [Chalumeau 2008], [Backes 2010c], [Backes 2013] Thresholds + features Features: degree, hierarchical degree (avg / min / max) Invariance, robustness Graph structure analysis [Tang 2012b] Graph to Network Thresholds + descriptors Degree, joint degree, clustering-distance Saliency Saccade eye movements + different fixaon >me = saliency map => model them as walks in networks [Harel 2006], [Costa 2007], [Gopalakrishnan 2010], [Pal 2010], [Kim 2013] Network construc>on Nodes • pixels • segments • blocks Edges • local (neighbourhood) • global (most similar) • both Edge weights = (distance in feature space) / (distance in image space) Features: • relave intensity • entropy of local orientaons • compactness of local colour Random walks Eigenvector centrality == staonary distribu>on for Markov chain == expected >me a walker spends in the node Random walk with restart (RWR) If we have prior info on node importance,
    [Show full text]