Differential Gestation Feeding Levels on Sow and Litter Performance, Nutrient Digestibility and Energy Homeostasis a Dissertatio

Total Page:16

File Type:pdf, Size:1020Kb

Differential Gestation Feeding Levels on Sow and Litter Performance, Nutrient Digestibility and Energy Homeostasis a Dissertatio DIFFERENTIAL GESTATION FEEDING LEVELS ON SOW AND LITTER PERFORMANCE, NUTRIENT DIGESTIBILITY AND ENERGY HOMEOSTASIS A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY PING REN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ADVISED BY SAMUEL K. BAIDOO November 2016 © Ping Ren, 2016 Acknowledgements First and foremost, I want to praise the Lord and give all the thanksgivings to Him for His wonderful salvation, unconditional love and eternal hope He has revealed to me. Thanks God for preparing the people and circumstances around me to help me to experience His presence and complete my research smoothly. I would like to express my sincere and deep gratitude to my major supervisor Dr. Samuel Baidoo. Thank you for providing me this opportunity to study in U.S., and thank you for your guidance and encouragement during the past four years, and thank you for giving me so much freedom and allowing me to put my idea into practice during my research. I would also like to extend my thanks to my examining committee members, Drs. Daniel Gallaher, Milena Saqui-Salces, Chi Chen and Hansoo Joo. Thanks for Drs. Daniel Gallher, Milena Saqui-Salces and Chi Chen for opening your lab to allow me to do the lab work and thanks for your advice on the sample analysis. Special thanks to Dr. Hansoo Joo for your willingness to serve on my committee, although you have already retired. I would like to express my thanks to Dr. Crystal Levesque for driving from South Dakota State University to teach us to conduct cephalic vein catheterization. It would be impossible to finish this project without your dedication and support. I am also grateful to Dr. Shiquan Cui for your help on the proximate analysis. Your help really save me a lot of time so that I could focus on other lab work and thesis writing. I would like to thank the staff working in the sow unit at Southern Research and Outreach Center in Waseca, MN (Richard Goetz, Gary Dobberstein, Brain Lewer and Perry Rieck) for your friendship and assistance during the animal experiments. The experiments in this dissertation are truly a collaborative effort which would not be possible without the assistance and support from so many dedicated people in the swine nutrition group. I want to express my deep thanksgiving to Dr. Xiaojian Yang. Thanks for all your help during my PhD program, not only in experiment execution, but also in data analysis, manuscript preparation and thesis writing. Thanks for your advice and guidance during these years. You are invaluable in our group. I would like to thank Dr. Jinsoo Kim for your friendship and so much assistance you gave me during my animal experiments. I am also grateful to Dr. Deepa Menon, Devi Pangeni, Hayford Manu, Abel Tekeste and Blair Tostenson for your friendship and support during these years. I would like to thank Dr. Andrea Hanson for your friendship and encouragement during my PhD program. Special thanks to Dr. Pedro Urriola for your willingness to offer help when I needed. i I would like to thank U.S. Department of Agriculture-Agriculture and Food Research Initiative for their financial support on the projects in this dissertation. It would not be possible to finish these studies without their support. Finally, I want to express my great gratitude to my mother and father. Thank you for your constant love, support, encouragement and all of the sacrifices that you have made on my behalf during these four years. Without your support, I could not have completed my doctorate degree smoothly. ii Table of Contents Acknowledgements .............................................................................................................. i Table of Contents ............................................................................................................... iii List of Tables ..................................................................................................................... vi List of Figures .................................................................................................................... ix Chapter 1. Literature review ............................................................................................... 1 Introduction ..................................................................................................................... 1 Maternal nutrition on reproductive performance ............................................................ 4 Energy intake during gestation .................................................................................... 5 Energy intake during lactation ................................................................................... 11 Protein intake during gestation .................................................................................. 12 Protein intake during lactation ................................................................................... 17 Interaction between gestation and lactation protein intake ....................................... 17 Feeding level during gestation ................................................................................... 18 Feeding level during lactation ................................................................................... 21 Factors affecting voluntary feed intake during lactation ........................................... 24 Gestation housing systems ............................................................................................ 30 Effects of gestation housing systems on sow performance ....................................... 33 Effects of gestation housing systems on litter performance ...................................... 36 Effects of gestation housing systems on progeny development ................................ 37 Effects of gestation housing systems on sow welfare ............................................... 39 Factors affecting apparent digestibility of energy and nutrients ................................... 42 Age, BW and physiological stage .............................................................................. 42 Genotype .................................................................................................................... 44 Dietary factor ............................................................................................................. 46 Food intake regulation ................................................................................................... 49 iii Gastrointestinal hormones ......................................................................................... 50 Adiposity signals ....................................................................................................... 71 Interaction among long-term adiposity signals and short-term satiation signals ...... 74 Summary ....................................................................................................................... 75 Chapter 2. Effects of different feeding levels during four short periods of gestation and housing systems on sows and litter performance .............................................................. 86 SUMMARY .................................................................................................................. 86 INTRODUCTION ......................................................................................................... 87 MATERIALS AND METHODS .................................................................................. 88 RESULTS...................................................................................................................... 94 DISCUSSION ............................................................................................................. 102 CONCLUSION ........................................................................................................... 109 IMPLICATIONS ......................................................................................................... 109 Chapter 3. Effect of different feeding levels during three short periods of gestation on sow and litter performance over two reproductive cycles .............................................. 129 SUMMARY ................................................................................................................ 129 INTRODUCTION ....................................................................................................... 130 MATERIALS AND METHODS ................................................................................ 131 RESULTS.................................................................................................................... 138 DISCUSSION ............................................................................................................. 142 CONCLUSION ........................................................................................................... 149 Chapter 4. Effects of different feeding levels during three short periods of gestation on gilt and litter performance, nutrient digestibility and plasma hormones related to energy homeostasis in gilts ......................................................................................................... 168 SUMMARY ................................................................................................................ 168 INTRODUCTION ....................................................................................................... 169 MATERIALS AND METHODS ...............................................................................
Recommended publications
  • A Global Foresight on Food Crop Needs for Livestock Tristan Le Cotty, Bruno Dorin
    A global foresight on food crop needs for livestock Tristan Le Cotty, Bruno Dorin To cite this version: Tristan Le Cotty, Bruno Dorin. A global foresight on food crop needs for livestock. animal, Pub- lished by Elsevier (since 2021) / Cambridge University Press (until 2020), 2012, 6 (9), pp.1528-1536. 10.1017/S1751731112000377. hal-00800715 HAL Id: hal-00800715 https://hal-enpc.archives-ouvertes.fr/hal-00800715 Submitted on 14 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Animal (2012), 6:9, pp 1528–1536 & The Animal Consortium 2012 animal doi:10.1017/S1751731112000377 A global foresight on food crop needs for livestock - T. Le Cotty and B. Dorin CIRAD, UMR Cired, 73 rue Jean Franc¸ois Breton, 34398 Montpellier, France (Received 21 July 2010; Accepted 27 December 2011; First published online 23 February 2012) Increasingly more studies are raising concerns about the increasing consumption of meat and the increasing amount of crops (cereals and oilseeds in particular) used to feed animals and that could be used to feed people. The evolution of this amount is very sensitive to human diets and to the productivity of feed.
    [Show full text]
  • State-Of-The-Art on Use of Insects As Animal Feed
    State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production.
    [Show full text]
  • Economics of Aquaculture Feeding Practices in Selected Asian Countries Economics of Aquaculture Feeding Practices in Selected Asian Countries
    ISSN 0429-9345 505 FAO FISHERIES TECHNICAL PAPER 505 Economics of aquaculture feeding practices in selected Asian countries Economics of aquaculture feeding practices in selected Asian countries This technical paper provides an analysis of the economic implications of, and the reasons for, adopting various feeding practices for different fish species and aquaculture systems in Asia. It consists of case studies in six Asian countries (Bangladesh, China, India, the Philippines, Thailand and Viet Nam) and an overall synthesis ending with conclusions and recommendations. The systems studied include extensive/traditional, semi-intensive and intensive farms for a number of different species including sutchi and pangasiid catfishes (Bangladesh and Viet Nam), hybrid catfish (Thailand), carp polyculture (India and China), prawn and milkfish polyculture (the Philippines). The work identifies the principal input costs, assesses the economic rates of return (gross and net margins), returns to labour, land and capital, gross and net total factor productivity, and break-even prices and production. For the most part, intensive farms applying industrial feeds attained the highest economic returns, although not necessarily the highest benefits. In many cases, feed costs were extremely high, accounting for over 80 percent of the total. Feed cost, feeding rate, stocking rate, recovery or survival rate and fertilizer cost were identified as the key variables in influencing production. Use of intensive farming was consistent with strong farmer education and good extension practices. It is expected that the results of these studies will assist in adopting appropriate feed management strategies depending on the availability of inputs and the level of technical know-how of the farmers.
    [Show full text]
  • Effects of Different Densities of Sea Grape Caulerpa Lentillifera
    fishes Article Effects of Different Densities of Sea Grape Caulerpa lentillifera on Water Quality, Growth and Survival of the Whiteleg Shrimp Litopenaeus vannamei in Polyculture System Khanh Van Ly, David Kamau Murungu * , Dung Phuong Nguyen and Ngoc Anh Thi Nguyen Department of Coastal Aquaculture, College of Aquaculture and Fisheries, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho City 94000, Vietnam; [email protected] (K.V.L.); [email protected] (D.P.N.); [email protected] (N.A.T.N.) * Correspondence: [email protected] Abstract: The integrated aquaculture-seaweed system has been identified as a bio-mitigation strategy to overcome environmental damage, improve the efficiency of nutrient use, maintain good water quality, and ensure the system’s sustainability. This study was conducted to determine the appro- priate density of sea grape (Caulerpa lentillifera) in polyculture with whiteleg shrimp (Litopenaeus vannamei) in the same culture tank. Five treatments were randomly designed in triplicate tanks where shrimp was monocultured (without sea grape) as a control treatment and four polyculture treatments with different seaweed density levels (0.5, 1, 1.5, and 2 kg m−3) for 56 days. The results showed that polyculture of shrimp and sea grape significantly reduced the concentrations of total − − 3− ammonia nitrogen (TAN), nitrite (NO2 ), nitrate (NO3 ), and phosphate (PO4 ) in the rearing tanks and significantly improved (p < 0.05) the growth rate (6.67–6.76% day−1), survival (73.3–78.5%), Citation: Ly, K.V.; Murungu, D.K.; and production of shrimp (3.44–3.87 kg m−3) compared to monoculture (6.24% day−1, 54.8%, and Nguyen, D.P.; Nguyen, N.A.T.
    [Show full text]
  • OUTPUT-TO-FEED RATIOS, MONTHLY Month, Continued to Demonstrate the Cost-Price Squeeze Fac- Ratio - Hogs & Ratio - Broilers & Ing Livestock and Poultry Growers
    Vol. 10, No. 85/ May 5, 2011 If you are re-distributing Daily Livestock Report, please make sure that the recipients actually want it! We have received several e-mails in recent weeks from parties that are receiving DLR via fax. We do not send it via fax to anyone, so these are instances where one or more of our loyal readers are sharing a good thing (at least that is OUR opinion!) that, for some obviously peculiar reason, is not completely appreciated by the recipient. Not everyone is as smart as we are, right? Per our distribution policy, any subscriber is wel- come to share DLR with others but, given these calls, we would ask that you make sure all of the recipients want to receive the newsletter. A better solution, of course, is to ask your recipients to go to www.dailylivestockreport.com and subscribe. Their contact information is perfectly safe. We share our subscriber list with no one. We are flattered that readers believe the letter is worth sharing and appreciate your enthusiasm. Please just make sure that enthusiasm is shared by the people to whom are sending DLR. USDA’s monthly output-to-feed price ratios, published as part of the Agricultural Prices report near the end of each OUTPUT-TO-FEED RATIOS, MONTHLY month, continued to demonstrate the cost-price squeeze fac- Ratio - Hogs & Ratio - Broilers & ing livestock and poultry growers. The data for 1990 to present Cattle Turkeys appear in the chart at right. 60 12 The most dramatic shift in these numbers is clearly the Hog-Corn Fed Cattle-Corn near-record low level of the broiler:feed ratio which stood at 3.1 in 50 10 Broiler-Feed April, just 0.1 higher than its all-time low set in February.
    [Show full text]
  • Farm Animal Welfare and Human Health
    WellBeing International WBI Studies Repository 9-2016 Farm Animal Welfare and Human Health Alan M. Goldberg Johns Hopkins University Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_faafp Part of the Agribusiness Commons, Animal Studies Commons, and the Other Public Health Commons Recommended Citation Goldberg, A. M. (2016). Farm Animal Welfare and Human Health. Current Environmental Health Reports, 3(3), 313-321. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Farm Animal Welfare and Human Health Alan M. Goldberg Johns Hopkins University KEYWORDS farm animal welfare, CAFOs, sustainable intensification, human health, aquaculture ABSTRACT The paper examines the relationship between farm animal welfare, industrial farm animal production, and human health consequences. The data suggest that when the animal welfare of land-based farm animals is compromised, there are resulting significant negative human health consequences due to environmental degradation, the use of non-therapeutic levels of antibiotics for growth promotion, and the consequences of intensification. This paper accepts that even if meat and fish consumption is reduced, meat and fish will be part of the diet of the future. Industrial production modified from the current intensified systems will still be required to feed the world in 2050 and beyond. This paper identifies the concept of sustainable intensification and suggests that if farm animal welfare is improved, many of the human health consequences of intensified industrial production can be eliminated or reduced.
    [Show full text]
  • China Pork a Meaty Task to Meet Demand 19
    SECTOR BRIEFING number DBS Asian Insights DBS Group45 Research • July 2017 China Pork A Meaty Task to Meet Demand 19 DBS Asian Insights SECTOR BRIEFING 45 02 China Pork A Meaty Task to Meet Demand Alison FOK Senior Research Analyst DBS Group Research [email protected] Alice HUI, CFA Research Director DBS Group Research [email protected] Produced by: Asian Insights Office • DBS Group Research go.dbs.com/research @dbsinsights [email protected] Goh Chien Yen Editor-in-Chief Jean Chua Managing Editor Geraldine Tan Editor Martin Tacchi Art Director 19 DBS Asian Insights SECTOR BRIEFING 45 03 04 Executive Summary A Middle-Class Consumption Story 06 Future Required Capacity – How Big Is the Pork Market? Income Growth and Expenditure Implications On Infrastructure And 11 Key Challenges China’s Pork Supply Chain – Who Are 17 the Players? Hog Farms Slaughtering And Fresh Pork Manufacturers Processed Pork Manufacturers Pork Distributors And Retailers Cold Chain Logistics The Raw Material Suppliers – the Feedstock Producers 37 Business Model Cost of Producing a Pig in China Costs in China Versus Other Countries 46 Case Study of a Global Player: USA Opportunities Across the Industry 51 Chain 53 Appendix DBS Asian Insights SECTOR BRIEFING 45 04 Executive Summary Pork demand still on lready the world’s largest pork market – representing around half of global demand the rise.... – China’s market is expected to sustain a steady growth of 1.3-1.4% per annum going forward. Growing income, along with a rising middle class and continual urbanisation, would drive Chinese consumers towards a diet based more heavily Aon animal protein.
    [Show full text]
  • 2007 Proceedings
    Sponsors Midwest Swine Nutrition Conference 2007 ADM Animal Nutrition Agri-King Ajinomoto Heartland LLC Akey Alltech Alpharma Animal Health APC Company, Inc. BASF Corporation Cooper Farms Danisco Animal Nutrition Degussa Corporation Diamond V Mills Distributors Processing DSM Nutritional Products, Inc. Elanco Animal Health Fats and Proteins Research Foundation Hubbard Feeds, Inc. International Ingredient Corporation JBS United, Inc. Kemin Land O’Lakes/Purina Mills Monsanto National Pork Board Newsham Genetics Novartis Animal Health Novus International, Inc. Pig Improvement Company Pioneer, A Dupont Company Prince Agri Products, Inc. Ralco Nutrition Zinpro Corporation Appreciation is expressed to the Indiana Farm Bureau and their staff for hosting the Midwest Swine Nutrition Conference and providing the facilities for this function. CONTENTS Animal sciences in academia: What does the future hold? Robert A. Easter; University of Illinois ......................................................... 3 Managing grouped sows Janeen L. Salak-Johnson and Stanley E. Curtis; University of Illinois ............................................................................................................ 6 Are antioxidants associated with pig and sow mortalities? D. C. Mahan, J. C. Peters, and G. M. Hill; The Ohio State University, and Michigan State University ................................................................... 13 PCVAD: When immunology goes wrong, life on the farm becomes very expensive Thomas G. Gillespie; DVM, Rensselaer Swine
    [Show full text]
  • Preferences and Adoption of Livestock Feeding Practices Dairy Kenya Final
    Preferences and adoption of livestock feed practices among farmers in dairy management groups in Kenya Evelyne Kiptot, Steven Franzel, Judith Sinja and Eddah Nang'ole Preferences and adoption of livestock feed practices among farmers in dairy management groups in Kenya Evelyne Kiptot, Steven Franzel, Judith Sinja and Eddah Nang'ole LIMITED CIRCULATION Correct citation: Kiptot E, Franzel S, Sinja J, Nang’ole E. 2015. Preference and adoption of livestock feed practices among farmers in dairy management groups in Kenya. ICRAF Working Paper No. 208. Nairobi, World Agroforestry Centre. DOI: http://dx.doi.org/10.5716/WP15675.PDF Titles in the Working Paper Series aim to disseminate interim results on agroforestry research and practices and stimulate feedback from the scientific community. Other publication series from the World Agroforestry Centre include: Technical Manuals, Occasional Papers and the Trees for Change Series. Published by the World Agroforestry Centre United Nations Avenue PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 722 4000, via USA +1 650 833 6645 Fax: +254(0)20 722 4001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org ©World Agroforestry Centre Working Paper No 208 The views expressed in this publication are those of the authors and not necessarily those of the World Agroforestry Centre. Articles appearing in the Working Paper Series may be quoted or reproduced without charge, provided their source is acknowledged. ii About the authors Evelyn Kiptot is a social scientist at the World Agroforestry Centre, Nairobi, Kenya. Contact: [email protected] Steven Franzel is a principal agricultural economist at the World Agroforestry Centre, based in the United States of America.
    [Show full text]
  • Water Consumption Behavior in Broilers David Harold Mccreery University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2015 Water Consumption Behavior in Broilers David Harold McCreery University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Nutritional Epidemiology Commons, and the Poultry or Avian Science Commons Recommended Citation McCreery, David Harold, "Water Consumption Behavior in Broilers" (2015). Theses and Dissertations. 1301. http://scholarworks.uark.edu/etd/1301 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Water Consumption Behavior in Broilers A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Poultry Science by David McCreery California State Polytechnic University Bachelor of Science in Animal Science, 1992 July 2015 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. Susan Watkins Dissertation Director Dr. Craig Coon Dr. Karen Christensen Committee Member Committee Member Dr. Andrew Sharpley Dr. John Halley Committee Member Committee Member Abstract A series of trials were conducted to analyze broiler water consumption behaviors under commercial conditions. The first trial was to quantify the number of broilers drinking at times of peak water demand. Birds were evaluated at time intervals of 5, 10, 15, 30, 45, and 60 minutes from the start of the light period to establish the percentage birds having consumed water by that point in time. Significant differences were found by bird age in the 5, 10, and 15 minute intervals, however there were no significant differences in the percentage of birds having consumed water in the 30, 45, and 60 minute intervals.
    [Show full text]
  • Swine Feed Efficiency: Implications for Swine Behavior, Physiology and Welfare Jessica Diane Colpoys Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Swine feed efficiency: implications for swine behavior, physiology and welfare Jessica Diane Colpoys Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Colpoys, Jessica Diane, "Swine feed efficiency: implications for swine behavior, physiology and welfare" (2015). Graduate Theses and Dissertations. 14747. https://lib.dr.iastate.edu/etd/14747 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Swine feed efficiency: Implications for swine behavior, physiology and welfare by Jessica D. Colpoys A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Animal Physiology (Ethology) Program of Study Committee: Anna K. Johnson, Co-Major Professor Nicholas K. Gabler, Co-Major Professor Aileen F. Keating Suzanne T. Millman Cheryl L. Morris Jason W. Ross Iowa State University Ames, Iowa 2015 Copyright © Jessica D. Colpoys, 2015. All rights reserved. ii TABLE OF CONTENTS Page LIST OF TABLES .........................................................................................................
    [Show full text]
  • Chapter Four. Parity Prices, Parity Ratio, and Feed Price Ratios
    Chapter Four. Parity Prices, Parity Ratio, and Feed Price Ratios IN THIS CHAPTER Three major provisions of the amended Act relating to the calculation of parity prices are: History / Background .................................... 4-2 (1) The 'parity price' for any agricultural commod- Legislation..................................................... 4-4 ity, as of any date, is determined by multiply- ing the adjusted base price of such commodity Parity Prices ................................................. 4-8 by the parity index. Parity Price Calculations ............................ 4-8 (2) The 'adjusted base price' of any agricultural Uses of Parity Prices .................................. 4-9 commodity, as of any date, is (i) the average of the prices received by Limitations of Parity ................................. 4-10 farmers for such commodity, at such Parity Ratio .................................................. 4-13 time as the Secretary may select dur- ing each year of the ten-year period Interpretations and Uses ........................... 4-13 ending on the 31st of December last before such date, or during each mar- Adjusted Parity Ratio ................................ 4-14 keting season beginning in such peri- od if the Secretary determines use of a Limitations ................................................ 4-14 calendar year basis to be impractica- Feed Price Ratios ......................................... 4-15 ble, divided by (ii) the ratio of the general level of prices Background ..............................................
    [Show full text]