bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082388; this version posted May 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Eyes are essential for magnetoreception in a mammal Kai R. Caspar1, Katrin Moldenhauer1, Regina E. Moritz1,3, E. Pascal Malkemper2, Sabine Begall1,4* 1Department of General Zoology, University of Duisburg-Essen, Universitaetsstr. 5, 45117 Essen, Germany 2Max Planck Research Group Neurobiology of Magnetoreception, Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany 3Department Vision, Visual Impairment & Blindness, Faculty 13, Technical University of Dortmund, Emil-Figge-Straße 50, 44227 Dortmund, Germany 4Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sci- ences, Czech University of Life Sciences, 16521 Praha 6, Czech Republic Correspondence to
[email protected] Abstract: Several groups of mammals use the Earth’s magnetic field for orientation, but their magnetosensory organ remains unknown. The Ansell’s mole-rat (Fukomys anselli) is a subterranean rodent with innate magnetic orientation behavior. Previous studies proposed that its magnetoreceptors are located in the eye. To test this hypothesis, we assessed magnetic orientation in enucleated mole-rats. Initially, we demonstrate that enucleation of mole-rats does not lead to changes in routine behaviors. We then studied magnetic compass orientation by employing a well-established nest building assay. To ensure that directional responses were based on magnetic parameters, we tested animals under four magnetic field alignments.