Time Hypothesis on a Quantum Computer the Implications Of

Total Page:16

File Type:pdf, Size:1020Kb

Time Hypothesis on a Quantum Computer the Implications Of The implications of breaking the strong exponential time hypothesis on a quantum computer Jorg Van Renterghem Student number: 01410124 Supervisor: Prof. Andris Ambainis Master's dissertation submitted in order to obtain the academic degree of Master of Science in de informatica Academic year 2018-2019 i Samenvatting In recent onderzoek worden reducties van de sterke exponenti¨eletijd hypothese (SETH) gebruikt om ondergrenzen op de complexiteit van problemen te bewij- zen [51]. Dit zorgt voor een interessante onderzoeksopportuniteit omdat SETH kan worden weerlegd in het kwantum computationeel model door gebruik te maken van Grover's zoekalgoritme [7]. In de klassieke context is SETH wel nog geldig. We hebben dus een groep van problemen waarvoor er een klassieke onder- grens bekend is, maar waarvoor geen ondergrens bestaat in het kwantum com- putationeel model. Dit cre¨eerthet potentieel om kwantum algoritmes te vinden die sneller zijn dan het best mogelijke klassieke algoritme. In deze thesis beschrijven we dergelijke algoritmen. Hierbij maken we gebruik van Grover's zoekalgoritme om een voordeel te halen ten opzichte van klassieke algoritmen. Grover's zoekalgoritme lost het volgende probleem op in O(pN) queries: gegeven een input x ; :::; x 0; 1 gespecifieerd door een zwarte doos 1 N 2 f g die queries beantwoordt, zoek een i zodat xi = 1 [32]. We beschrijven een kwantum algoritme voor k-Orthogonale vectoren, Graaf diameter, Dichtste paar in een d-Hamming ruimte, Alle paren maximale stroom, Enkele bron bereikbaarheid telling, 2 sterke componenten, Geconnecteerde deel- graaf en S; T -bereikbaarheid. We geven ook nieuwe ondergrenzen door gebruik te maken van reducties en de sensitiviteit methode. Voor Dichtste paar in een d-Hamming ruimte, Enkele bron bereikbaarheid telling, 2 sterke componenten en Geconnecteerde deelgraaf geven we een ondergrens aan hun kwantum query complexiteit. Voor Dynamische problemen is het veel moeilijker om een goed kwantum algoritme te vinden. De oorzaak hiervan is dat kwantum algoritmes in het algemeen hun voordeel halen uit het feit dat tussenresultaten niet noodzakelijk moeten geweten zijn. Deze tussenresultaten zijn echter vaak handig om sneller de oplossing voor een licht aangepast probleem te vinden. Als laatste bekijken we ook een volledig ander model voor het beschrijven van kwantum algoritmen: span programma's [37]. Dit model is interessant omdat het toelaat om grafen problemen zoals st-connectiviteit op een nieuwe manier op te lossen [12]. Pogingen om dit algoritme aan te passen zodat het ook st-pad lengte kan oplossen mislukken echter. De oorzaak hiervan is het feit dat span programma's het mogelijk maken om lineaire combinaties te maken met negative factoren. Dit gaf de aanzet om kegel programma's te beschouwen om kwantum al- goritmes voor te stellen. We botsten echter op het probleem dat kegel pro- gramma's, ondanks het feit dat ze heel gelijkaardig zijn aan span programma's, moeilijker te vertalen zijn naar kwantum algoritmes. Dit wordt veroorzaakt door het gebrek aan orthogonaliteit tussen vectoren in een kegel en die er buiten. Een vector w kan zich binnen een kegel bevinden terwijl w er buiten ligt. Maar het isj onmogelijki om w en w te onderscheiden− gebruikmakend j i van een kwantum meeting. j i − j i ii Summary In recent research the strong exponential time hypothesis (SETH) in combina- tion with fine grained reductions have been used to prove lower bounds on the complexity of problems [51]. This provides an interesting research opportunity, because SETH is valid in a classical context, but can be broken using Grover search in the quantum query model [7]. We thus have a set of problems for which a classical lower bound is known, but no such lower bound exist in the quantum query model. This creates the potential for finding quantum algorithms which are faster than any classical algorithm. In this thesis we provide such algorithms, making use of Grover search to get our advantage over classical algorithms. Grover search solves the following problem in O(pN) queries: Given an input x ; :::; x 0; 1 specified by a 1 N 2 f g black box that answers queries, find an i such that xi = 1 [32]. We provide new quantum algorithms for k-Orthogonal vectors, Graph di- ameter, Closest pair in d-Hamming space, All pairs max flow, Single source reachability count, 2 Strong components, Connected subgraph and S; T - reach- ability. We also provide new quantum lower bounds for these problems using re- ductions and the sensitivity method. For 2-Orthogonal vectors, Closest pair in d-Hamming space,Single source reachability count, 2 Strong components and Connected subgraph we give a new lower bound on their quantum query com- plexity. Dynamic problems are much harder to improve upon using quantum algo- rithms, because quantum algorithms in general get their advantage by the fact that not all intermediate results are necessary. Yet these intermediate results are often useful to find faster results for a slightly modified problem. Finally we look at a completely different model for describing quantum algo- rithms: span programs [37]. This program paradigm provides a new way to look at graph problems such as st-connectivity [12]. We try to modify the algorithm for st-connectivity to provide an algorithm for st-distance. This approach is unsuccessful. After a close examination the cause is found to be the fact that span programs allow linear combinations using negative factors. This was a reason to look into Cone programs, which are similar to span programs, to describe quantum algorithms. But Cone programs, while closely related to span programs, are much harder to translate into a quantum algo- rithm. This is caused by the lack of orthogonality in a cone program. A vector w can be inside a cone while a vector w is outside the cone. Yet it is im- possiblej i to differentiate between w and− j wi using a quantum measurement. j i − j i iii The implications of breaking the strong exponential time hypothesis on a quantum computer. Jorg Van Renterghem Supervisor: Andris Ambainis Abstract In this study we provide quantum algorithms for problems which have a proven classical lower bound under the the strong exponential time hypothesis. We provide new quantum algorithms for k-Orthogonal vectors, Graph diameter, Closest pair in d-Hamming space, All pairs max flow, Single source reachability count, 2 Strong components, Connected subgraph and S, T -reachability. All of these algorithms are faster than the best known classical algorithm and most of them break the classical lower bound. For Closest pair in d-Hamming space, Single source reachability count, 2 Strong components and Connected subgraph we also give a new lower bound on their quantum query complexity. In a second part of this study we also look at cone programs as an alternative to span programs for defining quantum algorithms. 1 Introduction with clause size at most k (the so called k-SAT prob- (1 )n lem) and n variables cannot be solved in O(2 − ) In recent research the strong exponential time hy- time even by a randomized algorithm. pothesis (SETH) in combination with fine grained re- ductions have been used to prove lower bounds on the As the clause size k grows, the lower bound given complexity of problems [24]. This provides an inter- by SETH converges to 2n. SETH also implies that esting research opportunity, because SETH is valid in general CNF-SAT on formulas with n variables and n o(n) a classical context, but can be broken using Grover m clauses requires 2 − poly(m) time. search in a quantum query model [5]. SETH is motivated by the lack of fast algorithms We thus have a set of problems for which a classi- for k-SAT as k grows. It is a much stronger assump- cal lower bound is known, but no such lower bound tion than P = NP which assumes that SAT requires exist in the quantum query model. This creates the superpolynomial6 time. A weaker version, the Expo- potential for finding quantum algorithms which are nential Time Hypothesis (ETH) asserts that there is faster than any classical algorithm. some constant δ > 0 such that CNF-SAT requires Ω(2δn). 1.1 SETH In recent years there have been a considerable num- Impagliazzo, Paturi and Zane [14] introduced SETH ber of problems whose hardness has been proven un- to address the complexity of conjunctive normal form der SETH. Arguably the first such problem was the satisfiability problem (CNF-SAT). At the time they Orthogonal vector problem(OV) which was shown by only considered deterministic algorithms, but nowa- Williams [23] to require quadratic time under SETH. days it is common to extend SETH to allow random- Many conditional hardness results based on OV ization. and SETH have been discovered. For example for Graph diameter [20], All pairs max flow [16], dynamic Hypothesis 1 (SETH) For every > 0 there ex- graph problems [17],... A more extensive listing can ists an integer k 3 such that CNF-SAT on formulas be found in [24]. ≥ iv 1.2 Grover This measure is useful because it provides a lower bound on the complexity of f. In this thesis we provide such algorithms, making use of Grover search to get our advantage over classical Theorem 1 Given a function f :[q]n [l] with → algorithms. The problem Grover search solves can be q, n, l N. Ω( s(f)) is a lower bound on the quan- described as follows: tum query∈ complexity of f p Definition 1 (Search) Given an input x1, ..., xN 0, 1 specified by a black box that answers queries.∈ 2 Quantum algorithms In{ a} query, we input i to the black box and it outputs xi.
Recommended publications
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/Poly
    Electronic Colloquium on Computational Complexity, Report No. 23 (2011) Input-Oblivious Proof Systems and a Uniform Complexity Perspective on P/poly Oded Goldreich∗ and Or Meir† Department of Computer Science Weizmann Institute of Science Rehovot, Israel. February 16, 2011 Abstract We initiate a study of input-oblivious proof systems, and present a few preliminary results regarding such systems. Our results offer a perspective on the intersection of the non-uniform complexity class P/poly with uniform complexity classes such as NP and IP. In particular, we provide a uniform complexity formulation of the conjecture N P 6⊂ P/poly and a uniform com- plexity characterization of the class IP∩P/poly. These (and similar) results offer a perspective on the attempt to prove circuit lower bounds for complexity classes such as NP, PSPACE, EXP, and NEXP. Keywords: NP, IP, PCP, ZK, P/poly, MA, BPP, RP, E, NE, EXP, NEXP. Contents 1 Introduction 1 1.1 The case of NP ....................................... 1 1.2 Connection to circuit lower bounds ............................ 2 1.3 Organization and a piece of notation ........................... 3 2 Input-Oblivious NP-Proof Systems (ONP) 3 3 Input-Oblivious Interactive Proof Systems (OIP) 5 4 Input-Oblivious Versions of PCP and ZK 6 4.1 Input-Oblivious PCP .................................... 6 4.2 Input-Oblivious ZK ..................................... 7 Bibliography 10 ∗Partially supported by the Israel Science Foundation (grant No. 1041/08). †Research supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities. ISSN 1433-8092 1 Introduction Various types of proof systems play a central role in the theory of computation.
    [Show full text]
  • The Structure of Logarithmic Advice Complexity Classes
    The Structure of Logarithmic Advice Complexity Classes Jose L Balcazar Department of Software LSI Universitat Politecnicade Catalunya Pau Gargallo E Barcelona Spain balquilsiupces Montserrat Hermo Department of Software LSI Universidad del Pas Vasco PO Box E San Sebastian Spain jiphehumsiehues May Abstract A nonuniform class called here FullPlog due to Ko is studied It corresp onds to p olynomial time with logarithmically long advice Its imp ortance lies in the struc tural prop erties it enjoys more interesting than those of the alternative class Plog sp ecically its introduction was motivated by the need of a logarithmic advice class closed under p olynomialtime deterministic reductions Several characterizations of FullPlog are shown formulated in terms of various sorts of tally sets with very small information content A study of its inner structure is presented by considering the most usual reducibilitie s and lo oking for the relationships among the corresp onding reduction and equivalence classes dened from these sp ecial tally sets Partially supp orted by the EU through the ESPRIT Long Term Research Pro ject ALCOM IT and through the HCM Network CHRXCT COLORET by the Spanish DGICYT through pro ject PB KOALA and by Acciones Integradas HispanoAlemanas HAB and ALB Introduction Nonuniform complexity classes were essentially introduced in where the main rela tionships to uniform classes were already shown In order to capture characteristics of nonuniform mo dels of computation in which xed input lengths are compulsory in the denition
    [Show full text]
  • Non-Uniform Computation
    Non-Uniform Computation Lecture 10 Non-Uniform Computational Models: Circuits 1 Non-Uniform Computation 2 Non-Uniform Computation Uniform: Same program for all (the infinitely many) inputs 2 Non-Uniform Computation Uniform: Same program for all (the infinitely many) inputs Non-uniform: A different “program” for each input size 2 Non-Uniform Computation Uniform: Same program for all (the infinitely many) inputs Non-uniform: A different “program” for each input size Then complexity of building the program and executing the program 2 Non-Uniform Computation Uniform: Same program for all (the infinitely many) inputs Non-uniform: A different “program” for each input size Then complexity of building the program and executing the program Sometimes will focus on the latter alone 2 Non-Uniform Computation Uniform: Same program for all (the infinitely many) inputs Non-uniform: A different “program” for each input size Then complexity of building the program and executing the program Sometimes will focus on the latter alone Not entirely realistic if the program family is uncomputable or very complex to compute 2 Non-uniform advice 3 Non-uniform advice Program: TM M and advice strings {An} 3 Non-uniform advice Program: TM M and advice strings {An} M given A|x| along with x 3 Non-uniform advice Program: TM M and advice strings {An} M given A|x| along with x An can be the program for inputs of size n 3 Non-uniform advice Program: TM M and advice strings {An} M given A|x| along with x An can be the program for inputs of size n n |An|=2 is sufficient 3 Non-uniform advice Program: TM M and advice strings {An} M given A|x| along with x An can be the program for inputs of size n n |An|=2 is sufficient But {An} can be uncomputable (even if just one bit long) 3 Non-uniform advice Program: TM M and advice strings {An} M given A|x| along with x An can be the program for inputs of size n n |An|=2 is sufficient But {An} can be uncomputable (even if just one bit long) e.g.
    [Show full text]
  • SIGACT News Complexity Theory Column 52
    SIGACT News Complexity Theory Column 52 Lane A. Hemaspaandra Dept. of Computer Science, University of Rochester Rochester, NY 14627, USA Introduction to Complexity Theory Column 52 Bovet and Crescenzi’s Complexity Textbook Is Again Available For those who are big fans of the fantastic complexity textbook by Daniel Bovet and Pierluigi Crescenzi [BC93] (and I myself certainly am), there is great news. The authors have made their book available online, free of charge for noncommercial use. It can be found at via Pilu’s web site (start at http://www.algoritmica.org/piluc, then click on the “Books” section, and then click on “Introduction to the Theory of Complexity”). Speaking of textbooks, I see (via www.aw-bc.com/home) that a third edition of Hopcroft– Motwani–Ullman—which of course in its first edition was Hopcroft–Ullman—has just come out. Nifty! This Issue’s Column Oh, you nasty tricksy classes with promises! You know who you are: UP, FewP, ZPP, R, BPP, NP ∩ coNP, and the other usual suspects. Why can’t you be more like your well-behaved sibling NP? NP cleans up her toys and comes in for dinner when called. She has nice enumerations of machines of her own type that cover her exactly, she (not at all unrelatedly) has complete sets, she contains sparse sets not in her brother P exactly if their exponential-time cousins differ, she has (well, nondeterministic time itself has) a very tight time hierarchy theorem, and if she and P are equal with respect to even one tally oracle then they are equal in the real world.
    [Show full text]
  • Circuit Complexity Contents 1 Announcements 2 Relation to Other
    CS221: Computational Complexity Prof. Salil Vadhan Lecture 19: Circuit Complexity 11/6 Scribe: Chris Crick Contents 1 Announcements ² Problem Set 3, problem 2: You may use ², the regular expression for the empty string. ² PS3 due tomorrow. ² Be aware that you do not necessarily have to solve all of the problems on the problem set — the point is to get you to think about them. ² Reading: Papadimitriou x4.3, x11.4 2 Relation to other complexity measures Definition: The circuit complexity or circuit size of a function f : f0; 1gn ! f0; 1g is the number of gates in the smallest boolean circuit that computes f. Circuit complexity depends our choice of a universal basis, but only up to a constant. We can therefore use any such basis to represent our circuit. Because it’s familiar and convenient, then, we will usually use AND, OR and NOT, though sometimes the set of all boolean functions of two inputs and one output is more natural. Example: To provide a sense for how one programs with circuits, we will examine the thresh- 1 if at least two x s are 1 old function Th (x ; ¢ ¢ ¢ ; x ) = f i g. Figure 1 shows a simple circuit to 2 1 n 0 otherwise compute this function. In this circuit, li = 1 if at least one of (x1; : : : ; xi) = 1. ri becomes 1 once two xis equal 1. li is just xi _ li¡1, and ri is ri¡1 _ (li¡1 ^ xi). The output node is rn. Conventions for counting circuit gates vary a little – for example, some people count the inputs in the total, while others don’t.
    [Show full text]
  • Linear Advice for Randomized Logarithmic Space
    Linear Advice for Randomized Logarithmic Space Lance Fortnow1 and Adam R. Klivans2? 1 Department of Computer Science University of Chicago Chicago, IL 60637 [email protected] 2 Department of Computer Science The University of Texas at Austin Austin, TX 78712 [email protected] Abstract. We show that RL ⊆ L/O(n), i.e., any language computable in randomized logarithmic space can be computed in deterministic log- arithmic space with a linear amount of non-uniform advice. To prove our result we use an ultra-low space walk on the Gabber-Galil expander graph due to Gutfreund and Viola. 1 Introduction The question of whether RL, randomized logarithmic space, can be simulated in L, deterministic logarithmic space, remains a central challenge in complexity- theory. The best known deterministic simulation of randomized logarithmic space is due to Saks and Zhou [16] who, building on seminal work due to Nisan [13], proved that BPL ⊆ L3/2. Recently in a breakthrough result, Rein- gold [14] proved that the s-t connectivity problem on undirected graphs could be solved in L; this implies SL, the symmetric analogue of NL, equals L. The possibility of extending his techniques to prove RL = L has subsequently been investigated by Reingold, Trevisan and Vadhan [15]. 1.1 Randomness and Non-Uniformity The relationship between randomness and non-uniformity is a topic of funda- mental importance in complexity theory. Derandomizing complexity classes fre- quently involves a consideration of the smallest non-uniform complexity class or circuit family which contains a particular randomized class. Adleman’s well known result on BPP [1], for example, shows that BPP can be computed by polynomial-size circuits.
    [Show full text]
  • 18.405J S16 Lecture 3: Circuits and Karp-Lipton
    18.405J/6.841J: Advanced Complexity Theory Spring 2016 Lecture 3: Circuits and Karp-Lipton Scribe: Anonymous Student Prof. Dana Moshkovitz Scribe Date: Fall 2012 1 Overview In the last lecture we examined relativization. We found that a common method (diagonalization) for proving non-inclusions between classes of problems was, alone, insufficient to settle the P versus NP problem. This was due to the existence of two orcales: one for which P = NP and another for which P =6 NP . Therefore, in our search for a solution, we must look into the inner workings of computation. In this lecture we will examine the role of Boolean Circuits in complexity theory. We will define the class P=poly based on the circuit model of computation. We will go on to give a weak circuit lower bound and prove the Karp-Lipton Theorem. 2 Boolean Circuits Turing Machines are, strange as it may sound, a relatively high level programming language. Because we found that diagonalization alone is not sufficient to settle the P versus NP problem, we want to look at a lower level model of computation. It may, for example, be easier to work at the bit level. To this end, we examine boolean circuits. Note that any function f : f0; 1gn ! f0; 1g is expressible as a boolean circuit. 2.1 Definitions Definition 1. Let T : N ! N.A T -size circuit family is a sequence fCng such that for all n, Cn is a boolean circuit of size (in, say, gates) at most T (n). SIZE(T ) is the class of languages with T -size circuits.
    [Show full text]
  • Complexity Classes
    CHAPTER Complexity Classes In an ideal world, each computational problem would be classified at least approximately by its use of computational resources. Unfortunately, our ability to so classify some important prob- lems is limited. We must be content to show that such problems fall into general complexity classes, such as the polynomial-time problems P, problems whose running time on a determin- istic Turing machine is a polynomial in the length of its input, or NP, the polynomial-time problems on nondeterministic Turing machines. Many complexity classes contain “complete problems,” problems that are hardest in the class. If the complexity of one complete problem is known, that of all complete problems is known. Thus, it is very useful to know that a problem is complete for a particular complexity class. For example, the class of NP-complete problems, the hardest problems in NP, contains many hundreds of important combinatorial problems such as the Traveling Salesperson Prob- lem. It is known that each NP-complete problem can be solved in time exponential in the size of the problem, but it is not known whether they can be solved in polynomial time. Whether ? P and NP are equal or not is known as the P = NP question. Decades of research have been devoted to this question without success. As a consequence, knowing that a problem is NP- complete is good evidence that it is an exponential-time problem. On the other hand, if one such problem were shown to be in P, all such problems would be been shown to be in P,a result that would be most important.
    [Show full text]
  • Locating P/Poly Optimally in the Extended Low Hierarchy
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Theoretical Computer Science 134 (1994) 263-285 263 Elsevier Locating P/poly optimally in the extended low hierarchy J. Ktibler Abteilung fiirTheoretische Informatik, Universitiit Urn, D-89069 Vim. Germany Communicated by J. Diaz Received May 1993 Revised December 1993 Abstract Kobler, J., Locating P/poly optimally in the extended low hierarchy, Theoretical Computer Science 134 (1994) 263-285. The low hierarchy within NP and the extended low hierarchy have turned out to be very useful in classifying many interesting language classes. We relocate P/poly from the third Z-level EL!,’ (Balcazar et al., 1986) to the third O-level EL3‘I@ of the extended low hierarchy. The location of P/poly in EL3‘,@ is optimal since, as shown by Allender and Hemachandra (1992), there exist sparse sets that are not contained in the next lower level ELt,x. As a consequence of our result, all NP sets in P/poly are relocated from the third X-level L,‘9x (Ko and &honing, 1985) to the third O-level Ly,@ of the low hierarchy. 1. Introduction Based on ideas from recursive function theory, &honing [41] introduced the low and high hierarchies inside NP which turned out to be very useful in classifying decision problems in NP not known to be NP-complete or in P. In order to characterize the complexity of language classes not contained in NP, this idea was extended by Balcazar et al. [S], who defined the extended low and high hierarchies (for definitions see Section 2).
    [Show full text]
  • Some Estimated Likelihoods for Computational Complexity
    Some Estimated Likelihoods For Computational Complexity R. Ryan Williams MIT CSAIL & EECS, Cambridge MA 02139, USA Abstract. The editors of this LNCS volume asked me to speculate on open problems: out of the prominent conjectures in computational com- plexity, which of them might be true, and why? I hope the reader is entertained. 1 Introduction Computational complexity is considered to be a notoriously difficult subject. To its practitioners, there is a clear sense of annoying difficulty in complexity. Complexity theorists generally have many intuitions about what is \obviously" true. Everywhere we look, for every new complexity class that turns up, there's another conjectured lower bound separation, another evidently intractable prob- lem, another apparent hardness with which we must learn to cope. We are sur- rounded by spectacular consequences of all these obviously true things, a sharp coherent world-view with a wonderfully broad theory of hardness and cryptogra- phy available to us, but | gosh, it's so annoying! | we don't have a clue about how we might prove any of these obviously true things. But we try anyway. Much of the present cluelessness can be blamed on well-known \barriers" in complexity theory, such as relativization [BGS75], natural properties [RR97], and algebrization [AW09]. Informally, these are collections of theorems which demonstrate strongly how the popular and intuitive ways that many theorems were proved in the past are fundamentally too weak to prove the lower bounds of the future. { Relativization and algebrization show that proof methods in complexity theory which are \invariant" under certain high-level modifications to the computational model (access to arbitrary oracles, or low-degree extensions thereof) are not “fine-grained enough" to distinguish (even) pairs of classes that seem to be obviously different, such as NEXP and BPP.
    [Show full text]
  • Lecture 9: Nonuniformity 1 Time-Space Lower Bounds for SAT
    CS 710: Complexity Theory 10/6/2011 Lecture 9: Nonuniformity Instructor: Dieter van Melkebeek Scribe: David Guild This lecture finishes our discussion of Time-Space lower bounds for SAT. We then introduce the concept of nonuniformity, and explore three different models of nonuniform computation: Boolean circuits, branching programs, and uniform models with advice. 1 Time-Space Lower Bounds for SAT, continued Recall from the previous lecture that we wish to establish some lower bounds for SAT. Although we cannot yet prove a good lower bound in either time or space individually, we can show that no algorithm that solves SAT is both fast and space-efficient. In other words, there might be some linear time algorithm for SAT, and there might be some log space algorithm for SAT, but there is no algorithm that is both linear time and log space. Our actual theorem is stronger than this, but shows this result for SAT as well. In order to show a limit for SAT, we will first prove a result about NTIME(n), and then use NP-completeness to extend this limit to SAT. Theorem 1. For any positive c; d where c(c + d) < 2, NTIME(n) 6⊆ DTISP(nc; nd): We will prove this theorem by contradiction, using the Nondeterministic Time Hierarchy. In particular, we will assume that NTIME(n) ⊆ DTISP(nc; nd) for suitable c; d and then show that this implies that there exists some a; b where a > b and NTIME(na) ⊆ NTIME(nb). Proof of Theorem 1. Assume the theorem's inclusion holds, and choose some a ≥ 1.
    [Show full text]