Distributed Multihead X Design Kevin E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Release Notes for X11R6.8.2 the X.Orgfoundation the Xfree86 Project, Inc
Release Notes for X11R6.8.2 The X.OrgFoundation The XFree86 Project, Inc. 9February 2005 Abstract These release notes contains information about features and their status in the X.Org Foundation X11R6.8.2 release. It is based on the XFree86 4.4RC2 RELNOTES docu- ment published by The XFree86™ Project, Inc. Thereare significant updates and dif- ferences in the X.Orgrelease as noted below. 1. Introduction to the X11R6.8.2 Release The release numbering is based on the original MIT X numbering system. X11refers to the ver- sion of the network protocol that the X Window system is based on: Version 11was first released in 1988 and has been stable for 15 years, with only upwardcompatible additions to the coreX protocol, a recordofstability envied in computing. Formal releases of X started with X version 9 from MIT;the first commercial X products werebased on X version 10. The MIT X Consortium and its successors, the X Consortium, the Open Group X Project Team, and the X.OrgGroup released versions X11R3 through X11R6.6, beforethe founding of the X.OrgFoundation. Therewill be futuremaintenance releases in the X11R6.8.x series. However,efforts arewell underway to split the X distribution into its modular components to allow for easier maintenance and independent updates. We expect a transitional period while both X11R6.8 releases arebeing fielded and the modular release completed and deployed while both will be available as different consumers of X technology have different constraints on deployment. Wehave not yet decided how the modular X releases will be numbered. We encourage you to submit bug fixes and enhancements to bugzilla.freedesktop.orgusing the xorgproduct, and discussions on this server take place on <[email protected]>. -
Virtualgl / Turbovnc Survey Results Version 1, 3/17/2008 -- the Virtualgl Project
VirtualGL / TurboVNC Survey Results Version 1, 3/17/2008 -- The VirtualGL Project This report and all associated illustrations are licensed under the Creative Commons Attribution 3.0 License. Any works which contain material derived from this document must cite The VirtualGL Project as the source of the material and list the current URL for the VirtualGL web site. Between December, 2007 and March, 2008, a survey of the VirtualGL community was conducted to ascertain which features and platforms were of interest to current and future users of VirtualGL and TurboVNC. The larger purpose of this survey was to steer the future development of VirtualGL and TurboVNC based on user input. 1 Statistics 49 users responded to the survey, with 32 complete responses. When listing percentage breakdowns for each response to a question, this report computes the percentages relative to the total number of complete responses for that question. 2 Responses 2.1 Server Platform “Please select the server platform(s) that you currently use or plan to use with VirtualGL/TurboVNC” Platform Number of Respondees (%) Linux/x86 25 / 46 (54%) ● Enterprise Linux 3 (x86) 2 / 46 (4.3%) ● Enterprise Linux 4 (x86) 5 / 46 (11%) ● Enterprise Linux 5 (x86) 6 / 46 (13%) ● Fedora Core 4 (x86) 1 / 46 (2.2%) ● Fedora Core 7 (x86) 1 / 46 (2.2%) ● Fedora Core 8 (x86) 4 / 46 (8.7%) ● SuSE Linux Enterprise 9 (x86) 1 / 46 (2.2%) 1 Platform Number of Respondees (%) ● SuSE Linux Enterprise 10 (x86) 2 / 46 (4.3%) ● Ubuntu (x86) 7 / 46 (15%) ● Debian (x86) 5 / 46 (11%) ● Gentoo (x86) 1 / -
Ranger Environment Documentation
Ranger Environment Documentation Drew Dolgert May 18, 2010 Contents 1 Introduction 2 1.1 Ranger Hardware ....................................... 2 2 Connect 3 2.1 Login Nodes ........................................... 3 2.2 Exercise: Use SSH to Connect ................................ 3 2.2.1 SSH from Linux or Mac ................................ 3 2.2.2 SSH from Windows .................................. 3 2.3 Starting: Read Examples of Sessions ............................ 4 2.4 Further Exercise: Using X-Windows to Connect ...................... 5 2.4.1 Opening a Connection From Mac .......................... 5 2.4.2 Opening a Connection From Linux ......................... 6 2.4.3 Opening a Connection From Windows ....................... 6 2.5 Exercise: Connect with VNC ................................. 9 2.6 Further Exercise: Choose Your Shell ............................ 9 2.7 Advanced: Make Login Faster ................................ 10 2.7.1 Making Shortcuts on Windows ............................ 10 2.7.2 Setup SSH Keys for No Password Login ....................... 10 3 Using Module 10 3.1 About the Module Command ................................. 10 3.2 Discussion Exercise: Learn Modules ............................ 11 3.3 Modules List .......................................... 11 3.4 Exercise: Compilation with Modules ............................ 15 3.5 Further Exercise: Module Dependencies .......................... 15 4 Running in Batch 17 4.1 Text Editors ........................................... 17 4.1.1 VI Cheat Sheet -
The Future of X.Org on Non-GNU/Linux Systems
The future of X.Org on non-GNU/Linux systems Matthieu Herrb OpenBSD/X.Org February 2, 2013 Introduction X has always been multi-platform XFree86 was started on SVr4 and FreeBSD, ported on Linux later. GNU/Linux/Freedesktop is now dominating the market... Most of X.Org development happen on Linux But In the Free Software world, should it be the only one ? 2/18 Agenda 1 System-dependent components 2 Current status 3 Observations 4 Conclusion 3/18 History X11R5 : one DDX per system, used OS-Specific kernel interfaces also supported non TCP/IP network protocols (decnet,...) XFree86 2 & 3: one DDX for all systems with os-support layer, direct hw access to VGA cards, avoiding complex kernel interfaces for video card support XFree86 4: added the OS-independant modules loader X.Org 7 started removing support for older, non POSIX, non TCP-IP systems (VMS, DECnet, OS/2,..) Remove direct hw access (KMS, DRI2) Turn the DDX to a GNU/Linux ? 4/18 Modern X.Org architecture Toolkits & Applications libGL Mesa/Gallium driver libX11/libxcb X server X driver libdrm drm console driver kernel graphics hardware 5/18 System dependencies locations toolchain support C99 Threads (and TLS) SSE2/Arm NEON/sparc VIS/PPC Altivec supprt (pixman) xserver/hw/xfree86/common/compiler.h ← nightmare... xserver/hw/xfree86/os-support/ console driver interface xserver/confg/ device hot-plug interface libpciaccess PCI bus interface xf86-input-* system keyboard/mouse interface libdrm kernel interface, including KMS XQuartz Xwin 2 remaining system specific DDXen xf86-video-* video driver interfaces 6/18 Solaris Thanks to Alan Coopersmith for the data Latest release: Solaris 11.1 X is in the OS. -
MC-1200 Series Linux Software User's Manual
MC-1200 Series Linux Software User’s Manual Version 1.0, November 2020 www.moxa.com/product © 2020 Moxa Inc. All rights reserved. MC-1200 Series Linux Software User’s Manual The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement. Copyright Notice © 2020 Moxa Inc. All rights reserved. Trademarks The MOXA logo is a registered trademark of Moxa Inc. All other trademarks or registered marks in this manual belong to their respective manufacturers. Disclaimer Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa. Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication. Technical Support Contact Information www.moxa.com/support Moxa Americas Moxa China (Shanghai office) Toll-free: 1-888-669-2872 Toll-free: 800-820-5036 Tel: +1-714-528-6777 Tel: +86-21-5258-9955 Fax: +1-714-528-6778 Fax: +86-21-5258-5505 Moxa Europe Moxa Asia-Pacific Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231 Moxa India Tel: +91-80-4172-9088 Fax: +91-80-4132-1045 Table of Contents 1. -
X Window System Network Performance
X Window System Network Performance Keith Packard Cambridge Research Laboratory, HP Labs, HP [email protected] James Gettys Cambridge Research Laboratory, HP Labs, HP [email protected] Abstract havior (or on a local machine, context switches between the application and the X server). Performance was an important issue in the develop- One of the authors used the network visualization tool ment of X from the initial protocol design and contin- when analyzing the design of HTTP/1.1 [NGBS 97]. ues to be important in modern application and extension The methodology and tools used in that analysis in- development. That X is network transparent allows us volved passive packet level monitoring of traffic which to analyze the behavior of X from a perspective seldom allowed precise real-world measurements and compar- possible in most systems. We passively monitor network isons. The work described in this paper combines this packet flow to measure X application and server perfor- passive packet capture methodology with additional X mance. The network simulation environment, the data protocol specific analysis and visualization. Our experi- capture tool and data analysis tools will be presented. ence with this combination of the general technique with Data from this analysis are used to show the performance X specific additions was very positive and we believe impact of the Render extension, the limitations of the provides a powerful tool that could be used in the analy- LBX extension and help identify specific application and sis of other widely used protocols. toolkit performance problems. We believe this analysis With measurement tools in hand, we set about char- technique can be usefully applied to other network pro- acterizing the performance of a significant selection of tocols. -
SUSE® Linux Enterprise Desktop 12 and the Workstation Extension: What's New ?
SUSE® Linux Enterprise Desktop 12 and the Workstation Extension: What's New ? Frédéric Crozat <[email protected]> Enterprise Desktop Release Manager Scott Reeves <[email protected]> Enterprise Desktop Development Manager Agenda • Design Criteria • Desktop Environment in SUSE Linux Enterprise 12 • GNOME Shell • Desktop Features and Applications 2 Design Criteria SUSE Linux Enterprise Desktop Interoperability Ease of Use Security Ease of Management Lower Costs 4 SUSE Linux Enterprise Desktop 12 • Focus on technical workstation ‒ Developers and System administrators • One tool for the job • Main desktop applications will be shipped: ‒ Mail client, Office Suite, Graphical Editors, ... • SUSE Linux Enterprise Workstation Extension ‒ Extend SUSE Linux Enterprise Server with packages only available on SUSE Linux Enterprise Desktop. (x86-64 only) 5 Desktop in SUSE Linux Enterprise 12 As Part of the Common Code Base SUSE Linux Enterprise 12 Desktop Environment • SUSE Linux Enterprise 12 contains one primary desktop environment • Additional light-weight environment for special use-cases: ‒ Integrated Systems • Desktop environment is shared between the server and desktop products 7 SUSE Linux Enterprise 12 Desktop Environment • GNOME 3 is the main desktop environment ‒ SLE Classic mode by default ‒ GNOME 3 Classic Mode and GNOME 3 Shell Mode also available • SUSE Linux Enterprise 12 ships also lightweight IceWM ‒ Targeted at Integrated Systems • QT fully supported: ‒ QT5 supported for entire SLE12 lifecycle ‒ QT4 supported, will be removed in future -
Release Notes for Xfree86® 4.8.0 the Xfree86 Project, Inc December 2008
Release Notes for XFree86® 4.8.0 The XFree86 Project, Inc December 2008 Abstract This document contains information about the various features and their current sta- tus in the XFree86 4.8.0 release. 1. Introduction to the 4.x Release Series XFree86 4.0 was the first official release of the XFree86 4 series. The current release (4.8.0) is the latest in that series. The XFree86 4.x series represents a significant redesign of the XFree86 X server,with a strong focus on modularity and configurability. 2. Configuration: aQuickSynopsis Automatic configuration was introduced with XFree86 4.4.0 which makes it possible to start XFree86 without first creating a configuration file. This has been further improved in subsequent releases. If you experienced any problems with automatic configuration in a previous release, it is worth trying it again with this release. While the initial automatic configuration support was originally targeted just for Linux and the FreeBSD variants, as of 4.5.0 it also includes Solaris, NetBSD and OpenBSD support. Full support for automatic configuration is planned for other platforms in futurereleases. If you arerunning Linux, FreeBSD, NetBSD, OpenBSD, or Solaris, try Auto Configuration by run- ning: XFree86 -autoconfig If you want to customise some things afterwards, you can cut and paste the automatically gener- ated configuration from the /var/log/XFree86.0.log file into an XF86Config file and make your customisations there. If you need to customise some parts of the configuration while leav- ing others to be automatically detected, you can combine a partial static configuration with the automatically detected one by running: XFree86 -appendauto If you areusing a platform that is not currently supported, then you must try one of the older methods for getting started like "xf86cfg", which is our graphical configuration tool. -
Porting X Windows System to Operating System Compliant with Portable Operating System Interface
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 11, No. 7, 2020 Porting X Windows System to Operating System Compliant with Portable Operating System Interface Andrey V. Zhadchenko1, Kirill A. Mamrosenko2, Alexander M. Giatsintov3 Center of Visualization and Satellite Information Technologies Scientific Research Institute of System Analysis Moscow, Russia Abstract—Now-a-days graphical interface is very important separated process contexts [4]. Current graphical subsystem for any operating system, even the embedded ones. Adopting is server-client X windows system implementation named existing solutions will be much easier than developing your XFree86 with version 4.8.0. Although XFree86 [5] supports up own. Moreover, a lot of software may be reused in this case. to the X11R6.6 protocol version, which is barely enough to run This article is devoted to X Window System adaptation for modern applications, absence of many important extensions, Portable Operating System Interface (POSIX) compliant real- for example, Xrender [6], implies heavy limits upon software. time operating system Baget. Many encountered problems come from the tight connection between X and Linux, therefore it is expected to encounter these issues during usage of X on non- Nowadays existing free software solutions in display Linux systems. Discussed problems include, but not limited to servers for operating systems are limited to two options: X the absence of dlopen, irregular file paths, specific device drivers. Windows System and Wayland [7]. However, there is a big Instructions and recommendations to solve these issues are given. ideological difference between them. X started it’s history a A comparison between XFree86 and Xorg implementations of X long time ago in the ’80s and was developed as an all-around is discussed. -
Release Notes for X11R7.5 the X.Org Foundation 1
Release Notes for X11R7.5 The X.Org Foundation 1 October 2009 These release notes contains information about features and their status in the X.Org Foundation X11R7.5 release. Table of Contents Introduction to the X11R7.5 Release.................................................................................3 Summary of new features in X11R7.5...............................................................................3 Overview of X11R7.5............................................................................................................4 Details of X11R7.5 components..........................................................................................5 Build changes and issues..................................................................................................10 Miscellaneous......................................................................................................................11 Deprecated components and removal plans.................................................................12 Attributions/Acknowledgements/Credits......................................................................13 Introduction to the X11R7.5 Release This release is the sixth modular release of the X Window System. The next full release will be X11R7.6 and is expected in 2010. Unlike X11R1 through X11R6.9, X11R7.x releases are not built from one monolithic source tree, but many individual modules. These modules are distributed as individ- ual source code releases, and each one is released when it is ready, instead -
Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference
USENIX Association Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference Monterey, California, USA June 10-15, 2002 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. XCL : An Xlib Compatibility Layer For XCB Jamey Sharp Bart Massey Computer Science Department Portland State University Portland, Oregon USA 97207–0751 fjamey,[email protected] Abstract 1 The X Window System The X Window System [SG86] is the de facto standard technology for UNIX applications wishing to provide a graphical user interface. The power and success of the X model is due in no small measure to its separation of The X Window System has provided the standard graph- hardware control from application logic with a stable, ical user interface for UNIX systems for more than 15 published client-server network protocol. In this model, years. One result is a large installed base of X applica- the hardware controller is considered the server, and in- tions written in C and C++. In almost all cases, these dividual applications and other components of a com- programs rely on the Xlib library to manage their inter- plete desktop environment are clients. -
HOW to VISUALIZE YOUR GPU-ACCELERATED SIMULATION RESULTS Peter Messmer, NVIDIA
HOW TO VISUALIZE YOUR GPU-ACCELERATED SIMULATION RESULTS Peter Messmer, NVIDIA RANGE OF ANALYSIS AND VIZ TASKS . Analysis: Focus quantitative . Visualization: Focus qualitative . Monitoring, Steering TRADITIONAL HPC WORKFLOW Workstation Analysis, Setup Visualization Supercomputer Viz Cluster Dump, Checkpointing Visualization, Analysis File System TRADITIONAL WORKFLOW: CHALLENGES Lack of interactivity prevents “intuition” Workstation High-end viz Analysis, neglected due Setup Visualization to workflow complexity Supercomputer Viz Cluster Viz resources need I/O becomes main to scale with simulation Dump, simulation bottleneck Checkpointing Visualization, Analysis File System OUTLINE . Visualization applications . CUDA/OpenGL interop . Remote viz . Parallel viz . In-Situ viz High-level overview. Some parts platform dependent. Check with your sysadmin. VISUALIZATION APPLICATIONS NON-REPRESENTATIVE VIZ TOOLS SURVEY OF 25 HPC SITES Surveyed sites: LLNL LLNL- ORNL- AFRL- NASA- NERSC -OCF SCF LANL CCS DOD-ORC DSCR AFRL ARL ERDC NAVY MHPCC ORS CCAC NAS NASA-NCCS TACC CHPC RZG HLRN Julich CSCS CSC Hector Curie NON-REPRESENTATIVE VIZ TOOLS SURVEY OF 25 HPC SITES Surveyed sites: LLNL LLNL- ORNL- AFRL- NASA- NERSC -OCF SCF LANL CCS DOD-ORC DSCR AFRL ARL ERDC NAVY MHPCC ORS CCAC NAS NASA-NCCS TACC CHPC RZG HLRN Julich CSCS CSC Hector Curie VISIT . Scalar, vector and tensor field data features — Plots: contour, curve, mesh, pseudo-color, volume,.. — Operators: slice, iso-surface, threshold, binning,.. Quantitative and qualitative analysis/vis — Derived fields, dimension reduction, line-outs — Pick & query . Scalable architecture . Open source http://wci.llnl.gov/codes/visit/ VISIT . Cross-platform — Linux/Unix, OSX, Windows . Wide range of data formats — .vtk, .netcdf, .hdf5,.. Extensible — Plugin architecture . Embeddable . Python scriptable VISIT’S SCALABLE ARCHITECTURE .