Fredholm Intersection Theory and Elliptic Boundary Deformation Problems, I
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF DIFFERENTIAL EQUATIONS 28, 189-201 (1978) Fredholm Intersection Theory and Elliptic Boundary Deformation Problems, I R. C. SWANSON Department of Mathematics, University of Missouri, Columbia, Missouri 6.5201 Received December 27, 1976 In finite dimensions, the amalgam of symplectic geometry, intersection theory, and variational problems has evolved into a rich and active area of current research. For example, using intersection theory on a certain Grassmann manifold, Arnol’d [2] has established asymptotic formulas for eigenvalues of the (stationary) Schrodinger equation. Weinstein [21] has obtained results expressing the number of solutions of a perturbed Hamiltonian system in terms of the topology of the manifold of solutions. Most recently, Duistermaat [a has given, perhaps, the first truly finite-dimensional proof of the Morse index theorem for geodesics with general boundary conditions. All of this work involves topological intersection theory for Lagrangian subspaces (discussed in Section 1) or, more generally, Lagrangian manifolds. In this paper, our goal will be first (Part I) to elaborate an analog, in infinite dimensions, for the Lagrangian intersection theory, which we shall apply (Part II) to obtain (Morse) index theorems for elliptic boundary deformation problems. Thus, in Section 1 we extend the setting of the finite-dimensional Lagrangian Grassmannian A(n) to an infinite-dimensional manifold 3/l, , consisting roughly of compact translations of a fixed Lagrangian subspace of a (Banach) symplectic vector space. We establish next (in Theorem 2.1) that the topology of F/l, corresponds to the stable homotopy structure of the sequence /l(n), n 4 CO, of Grassmann manifolds.
[Show full text]