Discussion Guide

Total Page:16

File Type:pdf, Size:1020Kb

Discussion Guide DISCUSSION GUIDE CREATED BY IMPACT MEDIA PARTNERS LLC FOR ZALA FILMS Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani 2 DISCUSSION GUIDE DISCUSSION GUIDE CONTENTS CREATED BY IMPACT MEDIA PARTNERS LLC 02 USING THIS GUIDE FOR ZALA FILMS RENEE GASCH, WRITER 03 ABOUT THE FILM 03 ABOUT THE FILMMAKER USING THIS GUIDE 04 DISCUSSION QUESTIONS This discussion guide is designed to support educa- 06 ESSAY QUESTIONS tors in presenting the film SECRETS OF THE SURFACE within the context of a women and gender 07 CLASS ACTIVITY studies curriculum. After screening the film for their class, educators can use the discussion questions 08 CONTEXTUAL INFORMATION included in this guide to facilitate student reflection ABOUT MARYAM MIRZAKHANI on the ways gender and cultural identity influenced GENDER EQUITY IN IRANIAN EDUCATION Maryam Mirzakhani’s achievements in mathemat- IRANIAN INTERNATIONAL STUDENTS ics. A variety of essay questions and a class activity GENDER AND RACE EQUITY IN STEM IN focused on implicit bias encourage students to think THE US systemically about equity in mathematics and other WOMEN IN MATHEMATICS HISTORY STEM fields. Educators will also find in this guide ISLAMIC ROOTS OF MATHEMATICS additional contextual information and recommended resources to supplement the information presented 14 RECOMMENDED READING in SECRETS OF THE SURFACE. Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani 3 DISCUSSION GUIDE ABOUT THE FILM Filmed in Canada, Iran, and the United States, SECRETS OF THE SURFACE: THE MATHEMATICAL VISION OF MARYAM MIRZAKHANI examines the life and mathematical work of Maryam Mirzakhani, an Iranian immigrant to the US who became a superstar in her field. In 2014, she was both the first woman and the first Iranian to be honored by mathematics’ highest prize, the Fields Medal. Mirzakhani’s contributions are explained in the film by leading mathematicians and illustrated by animated sequences. Her math- ematical colleagues from around the world, as well as former teachers, classmates, and students in Iran today, convey the deep impact of her achieve- ments. The path of her education, success on Iran’s Math Olympiad team, and her brilliant work, make Mirzakhani an ideal role model for girls looking to- ward careers in science and mathematics. ABOUT THE FILMMAKER George Paul Csicsery, a writer and independent filmmaker since 1968, was born in Germany in 1948, the son of Hungarian parents. He immigrated to the US in 1951. He has directed 32 films— dramatic shorts, performance films, and documentaries—many on the subjects of mathematics and science. Additional information and a filmography is available at ZALAFILMS.COM. Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani 4 DISCUSSION GUIDE Questions Use these questions to guide a discussion after watch- for Thought or ing the film. If you are a larger number of people, consider diving into small groups of four or six to tackle Discussion select questions and report back. 01 02 03 What did you know about What stereotypes did the What were some of the Maryam Mirzakhani before film challenge? Were any early sources of support watching SECRETS OF THE stereotypes reinforced by the that encouraged Mirzakhani SURFACE? What elements film? If so, which ones? to realize her potential in of her story stood out to you mathematics? as you were watching the film? 04 05 06 How did the friendship Mirzakhani’s teachers Graduates from Sharif between Mirzakhani and described her as a “child University of Technology in fellow mathematician Roya prodigy” in mathematics. Tehran typically apply to study Beheshti influence their How does being “exceptional” abroad for their PhDs. What mutual success? Could this help gain access to academic effect does “brain drain” relationship have helped to opportunity? have on the advancement mitigate some of the barriers of women’s rights within the to professional advancement country? that women often face? 07 08 09 How did gender roles change Can you name other women Women and people of color for Mirzakhani and her peers mathematicians in history? are disproportionately once they left Iran? What Why do you think women underrepresented in cultural continuities did the mathematicians are typically mathematics degrees and cohort of Iranian students less known than their male careers in the US. What maintain when they studied counterparts? What factors systemic factors influence the abroad, and how do you influence recognition in official demographic composition of think this contributed to historical records? mathematics and other STEM Mirzakhani’s success? fields? Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani 5 DISCUSSION GUIDE Questions for Thought or Discussion (continued) 10 11 12 While she was alive, What effect do you think What questions do you have Mirzakhani rejected the role models like Mirzakhani after watching SECRETS OF publicity that came with have on students in male- THE SURFACE? What would winning the Fields Medal. Yet dominated fields? How you like to research more in her death, she has become a might women and girl in order to help you better celebrated public figure. How mathematicians benefit from understand Mirzakhani’s story is Mirzakhani’s image used Mirzakhani’s success? and the themes relevant to to promote Iran’s national the film? interests? Who or what else benefits from celebrating Mirzakhani’s image as a woman mathematician? “If you want to get a reasonably good idea, you have to spend a 13 14 lot of time just thinking patiently, not getting Maryam wanted people to If Mirzakhani had grown up in look at her mathematics, the United States, how might disappointed somehow, not at the fact that she was her opportunities to succeed Iranian or a woman. She in mathematics have been coming back to the went out of her way to avoid different, either in a positive politicizing her image and her and/or negative sense? same problem. And role; given that, is it valid to analyze her life and work in staying somehow con- terms of gender, ethnicity, and culture? fident that maybe one day you will have a good idea.” - Maryam Mirzakhani Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani 6 DISCUSSION GUIDE Essay Questions Consider assigning one or more essay questions to students after watching the film to facilitate their own analysis of the issues. Civil rights scholar Kimberlé Crenshaw developed the concept of intersectionality in the 1980s while analyzing the ways Black women are affected by gender and race discrimina- tion simultaneously. Intersectionality can be used to better understand how people expe- rience society differently depending on the intersection of their identities. How would you 01apply intersectionality to Maryam Mirzakhani’s story? Which identities were foregrounded in the film to help us understand Mirzakhani’s experiences? In what ways did intersection- ality influence the opportunities available to Mirzakhani in the field of mathematics? How were Mirzakhani’s experiences consistent and/or inconsistent with others who share her identities? Reflect on your own socialization and how it has influenced your academic pursuits. Who and what influenced your early academic interests and how do you think these influenc- es affected the trajectory of your education? How has gender socialization in particular affected your participation in mathematics education or other science fields? What expe- 02riences, comments, or subtle messages were formative in shaping your ideas about gender roles and academics? Analyze the structural and systemic factors that influence equity in STEM careers in the US, Iran, or another country of interest. What does the data in your selected country indicate about the status of equity in STEM? How does the organization of the country’s education system affect equity across academic disciplines? What policies or procedures 03in the country influence equal access to opportunity in STEM careers? How do institutions in your selected country address retention of diverse STEM professionals once they are hired? Based on your research, what conclusions can you draw about strategies for in- creasing equity in STEM? *You can also use any of the discussion questions above as the basis for a more detailed essay assignment. Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani 7 DISCUSSION GUIDE In-Class or Group Activity Depending on technology available, this activity 03. Then ask students to watch the video “This test could be done together in a classroom setting, as- reveals implicit biases you don’t know you have” signed as homework, or added to an online class- posted at this LINK. room forum. 04. Finally, facilitate a class discussion to reflect on the concept of implicit bias with your students. Sample OBJECTIVE: Increase student understanding of discussion questions include: implicit bias toward social groups and how it af- fects equal access to opportunities in STEM fields. a. Based on the test and video in this class activ- ity, how would you define implicit bias in your TIME: Approx. 45 minutes own words? b. What was your experience taking the test? MATERIALS: What was going through your head as you To complete this activity, students will need access were completing it? to: c. What is your assessment of the test design? Do • Computers with Internet you think it can accurately detect implicit bias? • LINK to Implicit Bias Test by Project Implicit at Har- Why or why not? vard University (Approx. 5 minutes) d. Based on the video you watched, how might • LINK to video by Christian Science Monitor (2018) implicit bias affect equal opportunity? “This test reveals implicit biases you don’t know you have.” (Runtime: 6:20 minutes) e. What strategies did the video recommend to address implicit bias? What are the strengths and weaknesses of the recommendations sug- INSTRUCTIONS: gested? 01. Assign students to take THE “GENDER-SCIENCE” IMPLICIT BIAS TEST.
Recommended publications
  • Why U.S. Immigration Barriers Matter for the Global Advancement of Science
    DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Ina Ganguli Patrick Gaulé Geoff Smith JANUARY 2021 DISCUSSION PAPER SERIES IZA DP No. 14016 Why U.S. Immigration Barriers Matter for the Global Advancement of Science Ruchir Agarwal Patrick Gaulé International Monetary Fund University of Bath and IZA Ina Ganguli Geoff Smith University of Massachusetts Amherst University of Bath JANUARY 2021 Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author. ISSN: 2365-9793 IZA – Institute of Labor Economics Schaumburg-Lippe-Straße 5–9 Phone: +49-228-3894-0 53113 Bonn, Germany Email: [email protected] www.iza.org IZA DP No. 14016 JANUARY 2021 ABSTRACT Why U.S.
    [Show full text]
  • The Work of Grigory Perelman
    The work of Grigory Perelman John Lott Grigory Perelman has been awarded the Fields Medal for his contributions to geom- etry and his revolutionary insights into the analytical and geometric structure of the Ricci flow. Perelman was born in 1966 and received his doctorate from St. Petersburg State University. He quickly became renowned for his work in Riemannian geometry and Alexandrov geometry, the latter being a form of Riemannian geometry for metric spaces. Some of Perelman’s results in Alexandrov geometry are summarized in his 1994 ICM talk [20]. We state one of his results in Riemannian geometry. In a short and striking article, Perelman proved the so-called Soul Conjecture. Soul Conjecture (conjectured by Cheeger–Gromoll [2] in 1972, proved by Perelman [19] in 1994). Let M be a complete connected noncompact Riemannian manifold with nonnegative sectional curvatures. If there is a point where all of the sectional curvatures are positive then M is diffeomorphic to Euclidean space. In the 1990s, Perelman shifted the focus of his research to the Ricci flow and its applications to the geometrization of three-dimensional manifolds. In three preprints [21], [22], [23] posted on the arXiv in 2002–2003, Perelman presented proofs of the Poincaré conjecture and the geometrization conjecture. The Poincaré conjecture dates back to 1904 [24]. The version stated by Poincaré is equivalent to the following. Poincaré conjecture. A simply-connected closed (= compact boundaryless) smooth 3-dimensional manifold is diffeomorphic to the 3-sphere. Thurston’s geometrization conjecture is a far-reaching generalization of the Poin- caré conjecture. It says that any closed orientable 3-dimensional manifold can be canonically cut along 2-spheres and 2-tori into “geometric pieces” [27].
    [Show full text]
  • Learning from Fields Medal Winners
    TechTrends DOI 10.1007/s11528-015-0011-6 COLUMN: RETHINKING TECHNOLOGY & CREATIVITY IN THE 21ST CENTURY Creativity in Mathematics and Beyond – Learning from Fields Medal Winners Rohit Mehta1 & Punya Mishra1 & Danah Henriksen2 & the Deep-Play Research Group # Association for Educational Communications & Technology 2016 For mathematicians, mathematics—like music, poetry, advanced mathematics through their work in areas as special- or painting—is a creative art. All these arts involve— ized and diverse as dynamical systems theory, the geometry of and indeed require—a certain creative fire. They all numbers, stochastic partial differential equations, and the dy- strive to express truths that cannot be expressed in ordi- namical geometry of Reimann surfaces. nary everyday language. And they all strive towards An award such as the Fields Medal is a recognition of beauty — Manjul Bhargava (2014) sustained creative effort of the highest caliber in a challenging Your personal life, your professional life, and your cre- domain, making the recipients worthy of study for scholars ative life are all intertwined — Skylar Grey interested in creativity. In doing so, we continue a long tradi- tion in creativity research – going all the way back to Galton in Every 4 years, the International Mathematical Union rec- the 19th century – of studying highly accomplished individ- ognizes two to four individuals under the age of 40 for their uals to better understand the nature of the creative process. We achievements in mathematics. These awards, known as the must point out that the focus of creativity research has shifted Fields Medal, have often been described as the “mathemati- over time, moving from an early dominant focus on genius, cian’s Nobel Prize” and serve both a form of peer-recognition towards giftedness in the middle of the 20th century, to a more of highly influential and creative mathematical work, as well contemporary emphasis on originality of thought and work as an encouragement of future achievement.
    [Show full text]
  • The Life and Works of Sadid Al-Din Kazeroni: an Iranian Physician and Anatomist
    ORerimgiinnaisl cAernticcele Middle East Journal of Cancer; JOuclyto 2b0e1r 52 061(38);: 9(4): 323-327 The Life and Works of Sadid al-Din Kazeroni: An Iranian Physician and Anatomist Seyyed Alireza Golshani* ♦, Seyyed Ehsan Golshan**, Mohammad Ebrahim Zohalinezhad*** *Department of History, Ferdowsi University of Mashhad, Mashhad, Iran **Department of Foreign Languages, Marvdasht Azad University, Marvdasht, Iran ***Assistant Professor, Persian Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Eessence of Parsiyan Wisdom Institute, Traditional Medicine and Medicinal Plant Incubator, Shiraz University of Medical Sciences, Shiraz, Iran Abstract Background: One of the great physicians in Iran who had expertise in medicine, surgery, and pharmacy was Sadid al-Din Kazeroni. He was a 14 th century physician. No information is available on his birth and death – only “Al-Mughni”, a book, has been left to make him famous in surgical and medical knowledge. Methods: We used desk and historical research methods in this research, with a historical approach. This commonly used research method in human sciences was used to criticize and study the birthplace and works of Sadid al-Din Kazeroni. Results and Conclusion: Sadid al-Din Kazeroni discussed the exact issues in the field of anatomy, surgery, and gynecology. He was fluent in pharmacology. In his pharmacology book, for the first time, he named drugs considered necessary before and after surgery. In this study, we reviewed the biography and introduction of the works and reviewed “Al-Mughni”, a book on breast cancer. Keywords: Sadid al-Din Kazeroni, Breast cancer, Anatomical illustration, Al-Mughni, Persian medicine ♦Corresponding Author: Seyyed Alireza Golshani, PhD Student Introduction the Nobel Prize in Math.
    [Show full text]
  • Arxiv:2009.11923V1 [Math.GT] 24 Sep 2020 Manifolds One Is Interested in Studying
    A MODEL FOR RANDOM THREE{MANIFOLDS BRAM PETRI AND JEAN RAIMBAULT Abstract. We study compact three-manifolds with boundary obtained by randomly gluing together truncated tetrahedra along their faces. We prove that, asymptotically almost surely as the number of tetrahedra tends to infinity, these manifolds are connected and have a single boundary component. We prove a law of large numbers for the genus of this boundary component, we show that the Heegaard genus of these manifolds is linear in the number of tetrahedra and we bound their first Betti number. We also show that, asymptotically almost surely as the number of tetrahedra tends to infinity, our manifolds admit a unique hyperbolic metric with totally geodesic boundary. We prove a law of large numbers for the volume of this metric, prove that the associated Laplacian has a uniform spectral gap and show that the diameter of our manifolds is logarithmic as a function of their volume. Finally, we determine the Benjamini{Schramm limit of our sequence of random manifolds. 1. Introduction 1.1. Context. Random constructions of compact manifolds can be seen as an analogue of the well-established theory of random graphs and serve similar purposes. First of all, they make the notion of a \typical" manifold rigorous. Secondly, they can be used as a testing ground for conjectures of which the proof is still out of reach. Finally, there is what is often called the probabilistic method { using probability theory to prove the existence of objects with extremal properties. In this paper we are mostly interested in the first aspect.
    [Show full text]
  • Alexander Grothendieck Heng Li
    Alexander Grothendieck Heng Li Alexander Grothendieck's life Alexander Grothendieck was a German born French mathematician. Grothendieck was born on March 28, 1928 in Berlin. His parents were Johanna Grothendieck and Alexander Schapiro. When he was five years old, Hitler became the Chancellor of the German Reich, and called to boycott all Jewish businesses, and ordered civil servants who were not of the Aryan race to retire. Grothendieck's father was a Russian Jew and at that time, he used the name Tanaroff to hide his Jewish Identity. Even with a Russian name it is still too dangerous for Jewish people to stay in Berlin. In May 1933, his father, Alexander Schapiro, left to Paris because the rise of Nazism. In December of the same year, his mother left Grothendieck with a foster family Heydorns in Hamburg, and joined Schapiro in Paris. While Alexander Grothendieck was with his foster family, Grothendieck's parents went to Spain and partici- pated in the Spanish Civil War. After the Spanish Civil War, Johanna(Hanka) Grothendieck and Alexander Schapiro returned to France. In Hamburg, Alexander Grothendieck attended to elementary schools and stud- ied at the Gymnasium (a secondary school). The Heydorns family are a part of the resistance against Hitler; they consider that it was too dangerous for young Grothendieck to stay in Germany, so in 1939 the Heydorns sent him to France to join his parents. However, because of the outbreak of World War II all German in France were required by law to be sent to special internment camps. Grothendieck and his parents were arrested and sent to the camp, but fortunately young Alexander Grothendieck was allowed to continue his education at a village school that was a few miles away from the camp.
    [Show full text]
  • The Top Mathematics Award
    Fields told me and which I later verified in Sweden, namely, that Nobel hated the mathematician Mittag- Leffler and that mathematics would not be one of the do- mains in which the Nobel prizes would The Top Mathematics be available." Award Whatever the reason, Nobel had lit- tle esteem for mathematics. He was Florin Diacuy a practical man who ignored basic re- search. He never understood its impor- tance and long term consequences. But Fields did, and he meant to do his best John Charles Fields to promote it. Fields was born in Hamilton, Ontario in 1863. At the age of 21, he graduated from the University of Toronto Fields Medal with a B.A. in mathematics. Three years later, he fin- ished his Ph.D. at Johns Hopkins University and was then There is no Nobel Prize for mathematics. Its top award, appointed professor at Allegheny College in Pennsylvania, the Fields Medal, bears the name of a Canadian. where he taught from 1889 to 1892. But soon his dream In 1896, the Swedish inventor Al- of pursuing research faded away. North America was not fred Nobel died rich and famous. His ready to fund novel ideas in science. Then, an opportunity will provided for the establishment of to leave for Europe arose. a prize fund. Starting in 1901 the For the next 10 years, Fields studied in Paris and Berlin annual interest was awarded yearly with some of the best mathematicians of his time. Af- for the most important contributions ter feeling accomplished, he returned home|his country to physics, chemistry, physiology or needed him.
    [Show full text]
  • Interview with Research Fellow Maryam Mirzakhani
    Profile Interview with Research Fellow Maryam Mirzakhani Could you talk about your mathematical education? What experiences and people were especially influential? I was very lucky in many ways. The war ended when I finished elementary school; I couldn’t have had the great opportunities that I had if I had been born ten years earlier. I went to a great high school in Tehran, Farzanegan, and had very good teachers. I met my friend Roya Beheshti the first week after entering middle school. It is invaluable to have a friend who shares your interests, and helps you stay motivated. Our school was close to a street full of bookstores in Tehran. I remember how walking along this crowded street, and going to the bookstores, was so exciting for us. We couldn’t skim through the books like people usually do here in a bookstore, so we would end up buying a lot of random books. Maryam Mirzakhani, a native of Iran, is currently a professor of mathematics at Stanford. She Also, our school principal was a strong-willed completed her Ph.D. at Harvard in 2004 under the woman who was willing to go a long way to provide direction of Curtis T. McMullen. In her thesis she us with the same opportunities as the boys’ school. showed how to compute the Weil-Petersson volume Later, I got involved in Math Olympiads that made of the moduli space of bordered Riemann surfaces. me think about harder problems. As a teenager, I Her research interests include Teichmüller theory, enjoyed the challenge.
    [Show full text]
  • Number-Theory Prodigy Among Winners of Coveted Maths Prize Fields Medals Awarded to Researchers in Number Theory, Geometry and Differential Equations
    NEWS IN FOCUS nature means these states are resistant to topological states. But in 2017, Andrei Bernevig, Bernevig and his colleagues also used their change, and thus stable to temperature fluctua- a physicist at Princeton University in New Jersey, method to create a new topological catalogue. tions and physical distortion — features that and Ashvin Vishwanath, at Harvard University His team used the Inorganic Crystal Structure could make them useful in devices. in Cambridge, Massachusetts, separately pio- Database, filtering its 184,270 materials to find Physicists have been investigating one class, neered approaches6,7 that speed up the process. 5,797 “high-quality” topological materials. The known as topological insulators, since the prop- The techniques use algorithms to sort materi- researchers plan to add the ability to check a erty was first seen experimentally in 2D in a thin als automatically into material’s topology, and certain related fea- sheet of mercury telluride4 in 2007 and in 3D in “It’s up to databases on the basis tures, to the popular Bilbao Crystallographic bismuth antimony a year later5. Topological insu- experimentalists of their chemistry and Server. A third group — including Vishwa- lators consist mostly of insulating material, yet to uncover properties that result nath — also found hundreds of topological their surfaces are great conductors. And because new exciting from symmetries in materials. currents on the surface can be controlled using physical their structure. The Experimentalists have their work cut out. magnetic fields, physicists think the materials phenomena.” symmetries can be Researchers will be able to comb the databases could find uses in energy-efficient ‘spintronic’ used to predict how to find new topological materials to explore.
    [Show full text]
  • Ngô B O Châu
    Ngô Bảo Châu The University of Chicago Department of Mathematics 5734 S. University Avenue Chicago, IL 60637-1514, USA (773) 702-7385 [email protected] http://math.uchicago.edu/ ngo EDUCATION PhD Mathematics 1992-1997 Universit´eParis Sud BS Mathematics and Computer Sciences 1990-1992 ENS Paris, Universit´ePierre et Maris Curie APPOINTMENTS Professor of Mathematics 2010-present University of Chicago Scientific Director 2011-present Vietnam Institute for Advanced Study in Mathematics Long-term Member 2007-2010 Institute for Advanced Study, Princeton Professor 2004-2007 Universit´eParis Sud CNRS Fellow 1998-2004 Universit´eParis Nord OUTREACH C¡nh cûa mở rëng 2012-2016 Edition House Tr´ Book series edited in collaboration with Phan Vi»t. This book series contain 25 items translated from English and French. Ai và Ky ở xù sở cõa nhúng con sè tàng h¼nh 2013 Edition House Nh¢ Nam Math adventure book written in collaboration with Nguy¹n Phương V«n, more than 50K copies sold. Cùng Vi¸t Hi¸n Ph¡p 2012 Website Collection of journal papers on the process of amending Vietnam constitution in 2013. Work in collaboration with Đàm Thanh Sơn, Nguy¹n Anh Tu§n and Tr¦n Ki¶n. Học Th¸ Nào 2013 Website Collection of papers on education. Work in collaboration with Nguy¹n Phương V«n and L¶ Quý Hi¶n. Vietnam Education Dialogue 2014 Independent Research Groups on Higher Education Members of this independent research group include Đỗ Quèc Anh, Tr¦n Ngọc Anh, Vũ Thành Tự Anh, Ph¤m Hùng Hi»p, Ph¤m Ngọc Th­ng, Nguy¹n Phương V«n.
    [Show full text]
  • Public Recognition and Media Coverage of Mathematical Achievements
    Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre University of Alicante Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Sepulcre, J. "Public Recognition and Media Coverage of Mathematical Achievements," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 93-129. DOI: 10.5642/ jhummath.201902.08 . Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/8 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Public Recognition and Media Coverage of Mathematical Achievements Juan Matías Sepulcre Department of Mathematics, University of Alicante, Alicante, SPAIN [email protected] Synopsis This report aims to convince readers that there are clear indications that society is increasingly taking a greater interest in science and particularly in mathemat- ics, and thus society in general has come to recognise, through different awards, privileges, and distinctions, the work of many mathematicians.
    [Show full text]
  • Awards of ICCM 2013 by the Editors
    Awards of ICCM 2013 by the Editors academies of France, Sweden and the United States. He is a recipient of the Fields Medal (1986), the Crafoord Prize Morningside Medal of Mathematics in Mathematics (1994), the King Faisal International Prize Selection Committee for Science (2006), and the Shaw Prize in Mathematical The Morningside Medal of Mathematics Selection Sciences (2009). Committee comprises a panel of world renowned mathematicians and is chaired by Professor Shing-Tung Björn Engquist Yau. A nomination committee of around 50 mathemati- Professor Engquist is the Computational and Applied cians from around the world nominates candidates based Mathematics Chair Professor at the University of Texas at on their research, qualifications, and curriculum vitae. Austin. His recent work includes homogenization theory, The Selection Committee reviews these nominations and multi-scale methods, and fast algorithms for wave recommends up to two recipients for the Morningside propagation. He is a member of the Royal Swedish Gold Medal of Mathematics, up to two recipients for the Morningside Gold Medal of Applied Mathematics, and up to four recipients for the Morningside Silver Medal of Mathematics. The Selection Committee members, with the exception of the committee chair, are all non-Chinese to ensure the independence, impartiality and integrity of the awards decision. Members of the 2013 Morningside Medal of Mathe- matics Selection Committee are: Richard E. Borcherds Professor Borcherds is Professor of Mathematics at the University of California at Berkeley. His research in- terests include Lie algebras, vertex algebras, and auto- morphic forms. He is best known for his work connecting the theory of finite groups with other areas in mathe- matics.
    [Show full text]