Introduction to Deep Learning and Tensorflow

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Deep Learning and Tensorflow Introduction to Deep Learning and Tensorflow Day 1 MR ST LF FS SO IB CINECA Roma - SCAI Department Marco Rorro Stefano Tagliaventi Luca Ferraro Francesco Salvadore Sergio Orlandini Isabella Baccarelli Rome, 7th-9th Nov 2018 Outline Intro and ML Basics Intro The Task The Performance The Experience ML 1 Intro and ML Basics ingredients Data Model Objective f 2 Introduction Optimization Tensorflow Graph and Session 3 A simple ML ingredients example 4 Tensorflow Outline Intro and ML Basics Intro The Task The Performance 1 The Experience Intro and ML Basics ML ingredients Data 2 Introduction Model Objective f Optimization The Task Tensorflow The Performance Measure Graph and Session The Experience A simple example 3 ML ingredients 4 Tensorflow The Big Picture Intro and ML Basics Intro The Task The Performance The Experience ML ingredients Data Model Objective f Optimization Tensorflow Graph and Session A simple example Machine learning basics Intro and ML Basics Intro The Task Machine learning is a form of applied statistic with increased The Performance The Experience emphasis on the use of computers to statistically estimate ML ingredients complicated functions and decreased emphasis on proving Data Model confidence intervals around these functions. Objective f Optimization • Machine learning is a subset of Artificial Intelligence that Tensorflow Graph and uses statistics to build models θ of data from data. Session A simple example • Machine learning systems use frequentist statistics, i.e estimate the true fixed models from uncertain observations. • Machine learning systems use Bayesian statistics, i.e find best model from families of models. • Machine learning is a matter of statistics Machine learning definition Intro and ML Basics Intro The Task The Performance The Experience ML • Arthur Samuel (1959). Machine Learning: Field of study that ingredients Data gives computers the ability to learn without being explicitly Model Objective f Optimization programmed. Tensorflow • Tom Mitchell (1998) Well-posed Learning Problem: A Graph and Session A simple computer program is said to learn from experience E with example respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. Learning problems Intro and ML Basics Playing checkers Intro The Task The Performance • The task T : playing checkers. The Experience ML • The performance measure P : percent of games won against ingredients Data opponents. Model Objective f Optimization • The training experience E : playing practice games against Tensorflow itself. Graph and Session A simple example Recognize human faces in images • The task T : automatic human face recognition. • The performance measure P : percent of faces recognized. • The training experience E : learn from a database of face images. The Task Intro and ML Basics Intro • Machine learning enable us to tackle tasks that are too The Task The Performance The Experience difficult to solve with fixed programs written and designed by ML human beings. ingredients • Data fixed is referred to rule-based system where the decision Model Objective f process is defined at the design level of the algorithm. In such Optimization system output is deterministic with respect to the input. Tensorflow • Graph and probabilistic systems are in contrast to fixed programs. Session A simple • Machine learning deals with probabilistic systems. example • Time series forecasting • Computational linguistics • Game palying • Driving • The task shall not be confused with the learning phase, which instead is the procedure used to achieve the task. Tasks: Classification I Intro and ML Basics • In this type of task, the computer program is asked to specify Intro The Task which of k categories some input belongs to. The Performance n The Experience f : R ! f1; :::; kg. ML ingredients Map f could be a probability distribution over classes. Data Model A typical classification task is object recognition, where the Objective f Optimization input is an image. Tensorflow Graph and Session A simple example Tasks: Classification II Intro and ML Basics Intro The Task The Performance • The Experience Classification with missing inputs: It is possible to ML generalize the classification task to take into account ingredients Data incomplete inputs or some missing variable. Instead of Model Objective f learning a single function, the system can learn a probability Optimization Tensorflow distribution over all relevant variables, then solve the Graph and Session classification by marginalizing out the missing variables, i.e A simple example summing up over the unknown distributions to extract information on known ones. • A typical use case is related to medical diagnosis where some tests could be invasive or expensive. Tasks: Classification III Intro and ML Basics Intro The Task • Regression: In this type of task the program is asked to The Performance n The Experience predict a numerical value given some input. f : R ! R Used ML ingredients for example in algorithmic trading. Data Model Objective f Optimization Tensorflow Graph and Session A simple example Tasks: Structured output I Intro and ML Basics • In structured output tasks output values are related to each Intro The Task The Performance other. One example is parsing a natural language sentence The Experience where the output is the tree that describes its grammatical ML ingredients structure as for example tagging verbs, nouns, adverbs and Data Model so on. Objective f Optimization • Transcription: In this type of task, the machine learning Tensorflow Graph and Session system is asked to observe a relatively unstructured A simple example representation of some kind of data and transcribe the information into discrete textual form. Examples are optical character recognition and speech recognition, where the computer program is asked to map a raw data (image pixels or waveform audio data ) to a sequence of characters. • Machine translation: Translate from symbols in some language to symbols in another language. TasksI Intro and ML Basics • Anomaly detection: In this type of task, the computer Intro The Task program sifts through a set of events or objects and flags The Performance The Experience some of them as being unusual or atypical. One example is ML ingredients credit card fraud detection, by modeling user purchasing Data Model habits. Objective f Optimization • Synthesis and sampling: In this type of task, the machine Tensorflow Graph and learning algorithm is asked to generate new examples that Session A simple example are similar to those into the training data. For example video games can use synthesis to automatically generate textures for large objects. Another example is the speech synthesis task, where given a written sentence an audio waveform is produced containing the spoken version with the requirements that there is no single correct output for each input. A large amount of variation in the output produce a more natural and realistic system. TasksII Intro and • Denoising: Predict a clean output from a corrupted input. ML Basics • Intro Density estimation: In this kind of tasks the machine The Task The Performance learning algorithm is asked to learn a function The Experience n pmodel ! where pmodel (x) can be interpreted as a ML R R ingredients probability density function(if x is continuous) or a probability Data Model Objective f mass function (if x is discrete) on the space that the Optimization examples where drawn from. In density estimation tasks the Tensorflow Graph and algorithm needs to learn the structure of the data. Session A simple example The Performance Measure,P Intro and ML Basics Intro • To evaluate the abilities of a machine learning algorithm, we The Task The Performance The Experience must design a quantitative measure of its performance, ML usually related to the task T. ingredients Data • Model For classification tasks we can use the accuracy/error rate, Objective f Optimization i.e. the proportion of examples for which the model produces Tensorflow the correct/incorrect output. Graph and Session A simple • In machine learning field we are interested in evaluating the example performance on data that is not seen before. • We evaluate these performance measures using a test set of data that is separate from the data used for training the machine learning system. • It is often difficult to choose a performance measure corresponding well to the desired behavior of the system. The Experience, E I Intro and ML Basics Intro The Task The Performance The Experience ML Two main categories: ingredients Data Model • Unsupervised learning algorithms experience a dataset Objective f Optimization containing many features, then learn useful properties of the Tensorflow structure of this dataset. Graph and Session • In some contexts we wish to learn the entire probability A simple example distribution that generated a dataset • Implicitly : denoising, synthesis • Explicitly : density estimation The Experience, E II Intro and ML Basics Intro The Task The Performance The Experience ML ingredients Data Model Objective f Optimization Tensorflow Graph and Session A simple example • Supervised learning algorithm experience a dataset containing features, but each example is also associated with a label or target • Regression, classification, structured output The Experience, E III Intro and ML Basics Intro The Task • Unsupervised and supervised are not formally defined terms, The Performance The Experience many ML technologies can be used to perform both. ML ingredients
Recommended publications
  • Protolite: Highly Optimized Protocol Buffer Serializers
    Package ‘protolite’ July 28, 2021 Type Package Title Highly Optimized Protocol Buffer Serializers Author Jeroen Ooms Maintainer Jeroen Ooms <[email protected]> Description Pure C++ implementations for reading and writing several common data formats based on Google protocol-buffers. Currently supports 'rexp.proto' for serialized R objects, 'geobuf.proto' for binary geojson, and 'mvt.proto' for vector tiles. This package uses the auto-generated C++ code by protobuf-compiler, hence the entire serialization is optimized at compile time. The 'RProtoBuf' package on the other hand uses the protobuf runtime library to provide a general- purpose toolkit for reading and writing arbitrary protocol-buffer data in R. Version 2.1.1 License MIT + file LICENSE URL https://github.com/jeroen/protolite BugReports https://github.com/jeroen/protolite/issues SystemRequirements libprotobuf and protobuf-compiler LinkingTo Rcpp Imports Rcpp (>= 0.12.12), jsonlite Suggests spelling, curl, testthat, RProtoBuf, sf RoxygenNote 6.1.99.9001 Encoding UTF-8 Language en-US NeedsCompilation yes Repository CRAN Date/Publication 2021-07-28 12:20:02 UTC R topics documented: geobuf . .2 mapbox . .2 serialize_pb . .3 1 2 mapbox Index 5 geobuf Geobuf Description The geobuf format is an optimized binary format for storing geojson data with protocol buffers. These functions are compatible with the geobuf2json and json2geobuf utilities from the geobuf npm package. Usage read_geobuf(x, as_data_frame = TRUE) geobuf2json(x, pretty = FALSE) json2geobuf(json, decimals = 6) Arguments x file path or raw vector with the serialized geobuf.proto message as_data_frame simplify geojson data into data frames pretty indent json, see jsonlite::toJSON json a text string with geojson data decimals how many decimals (digits behind the dot) to store for numbers mapbox Mapbox Vector Tiles Description Read Mapbox vector-tile (mvt) files and returns the list of layers.
    [Show full text]
  • Tencentdb for Tcaplusdb Getting Started
    TencentDB for TcaplusDB TencentDB for TcaplusDB Getting Started Product Documentation ©2013-2019 Tencent Cloud. All rights reserved. Page 1 of 32 TencentDB for TcaplusDB Copyright Notice ©2013-2019 Tencent Cloud. All rights reserved. Copyright in this document is exclusively owned by Tencent Cloud. You must not reproduce, modify, copy or distribute in any way, in whole or in part, the contents of this document without Tencent Cloud's the prior written consent. Trademark Notice All trademarks associated with Tencent Cloud and its services are owned by Tencent Cloud Computing (Beijing) Company Limited and its affiliated companies. Trademarks of third parties referred to in this document are owned by their respective proprietors. Service Statement This document is intended to provide users with general information about Tencent Cloud's products and services only and does not form part of Tencent Cloud's terms and conditions. Tencent Cloud's products or services are subject to change. Specific products and services and the standards applicable to them are exclusively provided for in Tencent Cloud's applicable terms and conditions. ©2013-2019 Tencent Cloud. All rights reserved. Page 2 of 32 TencentDB for TcaplusDB Contents Getting Started Basic Concepts Cluster Table Group Table Index Data Types Read/Write Capacity Mode Table Definition in ProtoBuf Table Definition in TDR Creating Cluster Creating Table Group Creating Table Getting Access Point Information Access TcaplusDB ©2013-2019 Tencent Cloud. All rights reserved. Page 3 of 32 TencentDB for TcaplusDB Getting Started Basic Concepts Cluster Last updated:2020-07-31 11:15:59 Cluster Overview A cluster is the basic TcaplusDB management unit, which provides independent TcaplusDB service for the business.
    [Show full text]
  • Software License Agreement (EULA)
    Third-party Computer Software AutoVu™ ALPR cameras • angular-animate (https://docs.angularjs.org/api/ngAnimate) licensed under the terms of the MIT License (https://github.com/angular/angular.js/blob/master/LICENSE). © 2010-2016 Google, Inc. http://angularjs.org • angular-base64 (https://github.com/ninjatronic/angular-base64) licensed under the terms of the MIT License (https://github.com/ninjatronic/angular-base64/blob/master/LICENSE). © 2010 Nick Galbreath © 2013 Pete Martin • angular-translate (https://github.com/angular-translate/angular-translate) licensed under the terms of the MIT License (https://github.com/angular-translate/angular-translate/blob/master/LICENSE). © 2014 [email protected] • angular-translate-handler-log (https://github.com/angular-translate/bower-angular-translate-handler-log) licensed under the terms of the MIT License (https://github.com/angular-translate/angular-translate/blob/master/LICENSE). © 2014 [email protected] • angular-translate-loader-static-files (https://github.com/angular-translate/bower-angular-translate-loader-static-files) licensed under the terms of the MIT License (https://github.com/angular-translate/angular-translate/blob/master/LICENSE). © 2014 [email protected] • Angular Google Maps (http://angular-ui.github.io/angular-google-maps/#!/) licensed under the terms of the MIT License (https://opensource.org/licenses/MIT). © 2013-2016 angular-google-maps • AngularJS (http://angularjs.org/) licensed under the terms of the MIT License (https://github.com/angular/angular.js/blob/master/LICENSE). © 2010-2016 Google, Inc. http://angularjs.org • AngularUI Bootstrap (http://angular-ui.github.io/bootstrap/) licensed under the terms of the MIT License (https://github.com/angular- ui/bootstrap/blob/master/LICENSE).
    [Show full text]
  • Towards a Fully Automated Extraction and Interpretation of Tabular Data Using Machine Learning
    UPTEC F 19050 Examensarbete 30 hp August 2019 Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Per Hedbrant Master Thesis in Engineering Physics Department of Engineering Sciences Uppsala University Sweden Abstract Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Teknisk- naturvetenskaplig fakultet UTH-enheten Motivation A challenge for researchers at CBCS is the ability to efficiently manage the Besöksadress: different data formats that frequently are changed. Significant amount of time is Ångströmlaboratoriet Lägerhyddsvägen 1 spent on manual pre-processing, converting from one format to another. There are Hus 4, Plan 0 currently no solutions that uses pattern recognition to locate and automatically recognise data structures in a spreadsheet. Postadress: Box 536 751 21 Uppsala Problem Definition The desired solution is to build a self-learning Software as-a-Service (SaaS) for Telefon: automated recognition and loading of data stored in arbitrary formats. The aim of 018 – 471 30 03 this study is three-folded: A) Investigate if unsupervised machine learning Telefax: methods can be used to label different types of cells in spreadsheets. B) 018 – 471 30 00 Investigate if a hypothesis-generating algorithm can be used to label different types of cells in spreadsheets. C) Advise on choices of architecture and Hemsida: technologies for the SaaS solution. http://www.teknat.uu.se/student Method A pre-processing framework is built that can read and pre-process any type of spreadsheet into a feature matrix. Different datasets are read and clustered. An investigation on the usefulness of reducing the dimensionality is also done.
    [Show full text]
  • Datacenter Tax Cuts: Improving WSC Efficiency Through Protocol Buffer Acceleration
    Datacenter Tax Cuts: Improving WSC Efficiency Through Protocol Buffer Acceleration Dinesh Parimi William J. Zhao Jerry Zhao University of California, Berkeley University of California, Berkeley University of California, Berkeley [email protected] william [email protected] [email protected] Abstract—According to recent literature, at least 25% of cycles will serialize some set of objects stored in memory to a in a modern warehouse-scale computer are spent on common portable format defined by the protobuf compiler (protoc). “building blocks” [1]. Referred to by Kanev et al. as a “datacenter The serialized objects can be sent to some remote device, tax”, these tasks are prime candidates for hardware acceleration, as even modest improvements here can generate immense cost which will then deserialize the object into its own memory and power savings given the scale of such systems. to execute on. Thus protobuf is widely used to implement One of these tasks is protocol buffer serialization and parsing. remote procedure calls (RPC), since it facilitates the transport Protocol buffers are an open-source mechanism for representing of arguments across a network. Protobuf remains the most structured data developed by Google, and used extensively in popular serialization framework due to its maturity, backwards their datacenters for communication and remote procedure calls. While the source code for protobufs is highly optimized, certain compatibility, and extensibility. Specifically, the encoding tasks - such as the compression/decompression of integer fields scheme enables future changes to the protobuf schema to and the encoding of variable-length strings - bottleneck the remain backwards compatible. throughput of serializing or parsing a protobuf.
    [Show full text]
  • Distributed Services with Go Your Guide to Reliable, Scalable, and Maintainable Systems
    Extracted from: Distributed Services with Go Your Guide to Reliable, Scalable, and Maintainable Systems This PDF file contains pages extracted from Distributed Services with Go, published by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit http://www.pragprog.com. Note: This extract contains some colored text (particularly in code listing). This is available only in online versions of the books. The printed versions are black and white. Pagination might vary between the online and printed versions; the content is otherwise identical. Copyright © 2021 The Pragmatic Programmers, LLC. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher. The Pragmatic Bookshelf Raleigh, North Carolina Distributed Services with Go Your Guide to Reliable, Scalable, and Maintainable Systems Travis Jeffery The Pragmatic Bookshelf Raleigh, North Carolina Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade- marks of The Pragmatic Programmers, LLC. Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for errors or omissions, or for damages that may result from the use of information (including program listings) contained herein.
    [Show full text]
  • Protocol Buffers
    Protocol Buffers http://code.google.com/p/protobuf/ 1 Overview ● What are Protocol Buffers ● Structure of a .proto file ● How to use a message ● How messages are encoded ● Important points to remember ● More Stuff 2/33 What are Protocol Buffers? ● Serialization format by Google ● used by Google for almost all internal RPC protocols and file formats (currently 48,162 different message types defined in the Google code tree across 12,183 .proto files. They©re used both in RPC systems and for persistent storage of data in a variety of storage systems.) ● Goals: ● Simplicity ● Compatibility ● Performance 3/33 Comparison XML - Protobuf ● Readable by humans ↔ binary format ● Self-describing ↔ Garbage without .proto file ● Big files ↔ small files (3-10 times) ● Slow to serialize/parse ↔ fast (20-100 times) ● .xsd (complex) ↔ .proto (simple, less ambiguous) ● Complex access ↔ easy access 4/33 Comparison XML ± Protobuf (cntd) <person> Person { <name>John Doe</name> name: "John Doe" <email>[email protected]</email> email: "[email protected]" </person> } (== 69 bytes, 5-10©000ns to parse) (== 28 bytes, 100-200ns to parse) cout << "Name: " cout << "Name: " << person.name() << << endl; person.getElementsByTagName("nam cout << "E-mail: " << person.email() << e")->item(0)->innerText() endl; << endl; cout << "E-mail: " << person.getElementsByTagName("emai l")->item(0)->innerText() 5/33 << endl; Example message Person { required string name = 1; // name of person required int32 id = 2; // id of person optional string email = 3; // email address enum PhoneType { MOBILE = 0; HOME = 1; WORK = 2; } message PhoneNumber { required string number = 1; optional PhoneType type = 2 [default = HOME]; } 6/33 repeated PhoneNumber phone = 4; } From .proto to runtime ● Messages defined in .proto file(s) ● Compiled into source code with protoc ● C++ ● Java ● Python ● More languages via AddOns (C#, PHP, Perl, ObjC, etc) ● Usage in code ● Passed via network / files 7/33 Message Definition ● Messages defined in .proto files ● Syntax: Message [MessageName] { ..
    [Show full text]
  • Rohan Bharadwaj
    ROHAN BHARADWAJ WORK EXPERIENCE Software Engineer II Microsoft Corporation March 2017 – Present • Working on developing backend services for Microsoft Teams - a team collaboration and productivity application. Technologies used: C #, .NET, Azure Cloud Services Member of Technical Staff II Tintri Inc., Mountain View, CA Feb 2016 – March 2017 • Component owner of Replication module for System management. • Working on re-designing Site Recovery Manager implementation - Disaster recovery solution. • Designed and implemented efficient policy management by decreasing number of persistence calls in latest version of Tintri Global Center. Technologies used: Java, Python, REST API, PostgreSQL. Software Engineer, Intern Tintri Inc., Mountain View, CA June 2015 – August 2015 Tintri Global Center(TGC) • Worked on making TGC Virtual Machine data aggregator module more robust. • Implemented scalability framework to measure time taken by important services and threads in TGC. Technologies used: Java, Python, REST API, PostgreSQL. Developer Google India Pvt. Ltd., Hyderabad, India June 2012-July 2014 • Worked as a technical member of team with focus on building predictive models that proactively identified fraud occurring across Google Wallet and AdWords. • Implemented automated models to handle AdWords customer emails resulting in 60% automation Technologies used: Python, AngularJS, Protocol Buffers, F1 database, Dremel, JSON. EDUCATION Stony Brook University Stony Brook, NY Fall 2014 – Dec 2015 MS in Computer Science Graduate Coursework: Advanced Algorithms, Network Security, Artificial Intelligence, Asynchronous Systems, Wireless and Mobile Networks. Chaitanya Bharathi Inst. of Technology Hyderabad, India Fall 2008 – May 2012 Bachelor of Engineering in Computer Science Coursework: Compiler Design, Computer Networks, Algorithms, Database Management Systems, Computer Architecture, Principles of Programming Languages, Computer Architecture, Operating Systems.
    [Show full text]
  • Integrating R with the Go Programming Language Using Interprocess Communication
    Integrating R with the Go programming language using interprocess communication Christoph Best, Karl Millar, Google Inc. [email protected] Statistical software in practice & production ● Production environments !!!= R development environment ○ Scale: machines, people, tools, lines of code… ● “discipline of software engineering” ○ Maintainable code, common standards and processes ○ Central problem: The programming language to use ● How do you integrate statistical software in production? ○ Rewrite everything in your canonical language? ○ Patch things together with scripts, dedicated servers, ... ? Everybody should just write Java! Programming language diversity ● Programming language diversity is hard … ○ Friction, maintenance, tooling, bugs, … ● … but sometimes you need to have it ○ Many statistics problems can “only” be solved in R* ● How do you integrate R code with production code? ○ without breaking production *though my colleagues keep pointing out that any Turing-complete language can solve any problem The Go programming language ● Open-source language, developed by small team at Google ● Aims to put the fun back in (systems) programming ● Fast compilation and development cycle, little “baggage” ● Made to feel like C (before C++) ● Made not to feel like Java or C++ (enterprise languages) ● Growing user base (inside and outside Google) Integration: Intra-process vs inter-process ● Intra-process: Link different languages through C ABI ○ smallest common denominator ○ issues: stability, ABI evolution, memory management, threads, … Can we do better? Or at least differently? ● Idea: Sick of crashes? Execute R in a separate process ○ Runs alongside main process, closely integrated: “lamprey” ● Provide communication layer between R and host process ○ A well-defined compact interface surface Integration: Intra-process vs inter-process C runtime Go R RPC client C++ runtime IPC Messages Java (library) Python RPC server ..
    [Show full text]
  • Google Protocol Buffers Visual Studio Example
    Google Protocol Buffers Visual Studio Example Hal handcraft stragglingly. Centripetal Magnus overexcited sinisterly and fascinatingly, she interpenetrates her crag-and-tail qualifyings blindfold. Uncoordinated and supervenient Vince never subvert his ambulacrum! In such as protobuf protocol buffers studio The same goes true for Azure App Services. Scott Hanselman from more information. Deployment and development management for APIs on Google Cloud. Edge SDK GPB data access classes. There are a signature worth covering here. Migration and AI tools to optimize the manufacturing value chain. In android generated class is: public static final class Person extends com. Maps the specified type argument to cheer given value. In in case, generation can browse to an existing proto file on the filesystem. Your comment was approved. Ok, now people know much a protobuf schema looks and who know on it ends up in Schema Registry. The environment file is only created if you bowl an image repository for the module. They seldom live sound in specific PATH. Its on same fashion you! Orders service needs to communicate with capital service, Shippings, when creating an Order. Instead, return you whisper the latest library code from specific project site, as you might trigger some compatibility issues and collapse will ascend up spending time in resolving those. This article discusses integrating ASP. Otherwise, the cardboard would be created for cause request, them each request represented a real instance over the service. Timestamp outside barrier. Protocol Buffer syntax we want please use. If you proximity to generate the files by hand about every build anyway, it might as well put lipstick in the VCS.
    [Show full text]
  • E49730a41daf46378048e0bff5a
    Bazel build //:Go Help everyone become a global citizen! github/lingochamp Agenda • Package Management • Code Management (Multi languages) • Bazel build //:Go • Demo • Q & A Let's talk about Package Management vendor Go 1.5 introduced experimental support for a "vendor" directory, enabled by the GO15VENDOREXPERIMENT environment variable. Go 1.6 enabled this behavior by default , and in Go 1.7, this switch has been removed and the "vendor" behavior is ALWAYS enabled. vendor 很棒! 棒? @2015 - 2016? $ cd $GOPATH/src/upspin.io && tree vendor/ � � � IT WORKS. Russ Cox 有话要讲 A Proposal for Package Versioning in Go - Russ Cox Russ Cox 说: • Rust 的 Cargo 做的不错,于是我们做了 Dep • ⼋年的 go install 和 go get ⾟苦⼤家了, go module 了解⼀下 • go module 会⼲掉⼤部分的 vendor ⽬录 � Russ Cox 说: "the new concept of a Go module, which is a collection of packages versioned as a unit; verifiable and verified builds; and version-awareness throughout the go command, enabling work outside $GOPATH and the elimination of (most) vendor directories. vgo 1. Packages Versioned 2. Verifiable and verified builds 3. Work outside $GOPATH Google 这么多年怎么 build Go 的? Code Management :) Why should I care? is scaling up, fast $ kubectl get pods --all-namespaces | awk '{print $2}' | awk -F '-' '{print $1"-"$2}' | uniq | wc -l 213* Why should I care? • New product lines, features (D***n, Ba**ta, IELTS, etc.) • Increasingly sophisticated systems(E.g., adaptive learning system) • Ever tighter integration • Algorithm, backend, data, all part of one system • We are in the process of becoming a big data company
    [Show full text]
  • Better Than Protocol Buffers
    Better Than Protocol Buffers Grouty Jae never syntonises so pridefully or proselytise any centenarian senselessly. Rawish Ignacius whenreindustrializes eastwardly his Bentley deepening hummings awake gruesomely credulously. and Rab pragmatically. usually delights furthest or devoiced mundanely Er worden alleen cookies on windows successfully reported this variable on tag per field encoding than protocol buffers, vs protocol buffers Protocol buffers definitely seem like protocol buffers objects have to. Strong supporter of STEM education. Then i objectively agree to better than json with. There is, of course, a catch: The results can only be used as part of a new request sent to the same server. Avro is a clear loser. Add Wisdom Geek to your Homescreen! Google may forecast the Protocol Buffers performance in their future version. Matches my approach and beliefs. To keep things simple a ass is situate in hebrew new frameworks. These different protocols that protocol buffers and better this role does this technology holding is doing exactly what. Proto files which i comment if you want to better than jdk integer should check when constrained to. How can Use Instagram? The JSON must be serialized and converted into the target programming language both on the server side and client side. Get the latest posts delivered right to your inbox. Sound off how much better than protocol. This broad a wildly inaccurate statement. Protobuf protocol buffers are better than words, we developed in json on protocols to medium members are sending data access key and its content split into many languages? That project from descriptor objects that this makes use packed binary encodings, you are nice, none of defence and just an attacker to.
    [Show full text]