CADASIL: Notch Signaling Defect Or Protein Accumulation Problem?

Total Page:16

File Type:pdf, Size:1020Kb

CADASIL: Notch Signaling Defect Or Protein Accumulation Problem? CADASIL: Notch signaling defect or protein accumulation problem? Nancy B. Spinner J Clin Invest. 2000;105(5):561-562. https://doi.org/10.1172/JCI9511. Commentary When studies of the genetic etiology of human disease intersect with those of basic mechanisms in developmental biology, our understanding of normal and abnormal development is increased, and the knowledge gained enriches the work of both human geneticists and basic scientists. Such is the case with the work of A. Joutel et al. (1), who have previously demonstrated that mutations in the Notch3 gene are the cause of the autosomal dominant disorder CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). CADASIL is an adult-onset neurologic disorder (average age of onset is 45 years) characterized by recurrent strokes and dementia. Through positional cloning, Notch3 was found to be the gene responsible for the disorder (1), and mutations have been demonstrated in more than 90% of CADASIL patients (1, 2). The highly conserved Notch signaling pathway was originally identified and studied in the fruit fly Drosophila melanogaster. The name “Notch” derives from the characteristic notched wing found in flies carrying only 1 functioning copy of the gene. Homozygous Notch mutations are lethal, and affected embyros have severe abnormalities, including an excess of neural cells (3). A large body of work in the fruit fly, the nematode Caenorhabditis elegans, and more recently in vertebrates has revealed that this pathway plays a prominent role in development by contributing to the determination of […] Find the latest version: https://jci.me/9511/pdf CADASIL: Notch signaling defect or protein Commentary accumulation problem? See related article, pages 597–605. Nancy B. Spinner Divisions of Human Genetics and Clinical Laboratories, and Department of Pediatrics, The Children’s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA. Phone: (215) 590-4177; Fax: (215) 590-3850; E-mail: [email protected]. When studies of the genetic etiology of in 3 translocations in patients with T- In this issue of the JCI, A. Joutel et al. human disease intersect with those of cell neoplasms (4). At least 4 ligands for present studies on the expression and basic mechanisms in developmental Notch are known in humans (Jagged1, subcellular localization of Notch3 in biology, our understanding of normal Jagged2, Delta-like1, and Delta-like3); normal brains and in the brains of indi- and abnormal development is to date, only the Jagged1 gene has been viduals with CADASIL. In healthy indi- increased, and the knowledge gained associated with human disease. In the viduals as well as in CADASIL patients, enriches the work of both human mouse, mutations in Delta-like3 cause Notch3 is present in the smooth mus- geneticists and basic scientists. Such is the Pudgy phenotype, which is charac- cle cells in the cerebral vasculature, but the case with the work of A. Joutel et al. terized by severe vertebral and rib defor- in the CADASIL patients, the extracel- (1), who have previously demonstrated mities (5). Mice homozygous for muta- lular domain of the receptor accumu- that mutations in the Notch3 gene are tions in Jagged2 die in utero, secondary lates abnormally (12). Evidence from the cause of the autosomal dominant to severe defects in craniofacial mor- Drosophila has demonstrated that disorder CADASIL (cerebral autosomal phogenesis, and also display defects of Notch1 reaches the cell surface in 2 dominant arteriopathy with subcortical the limbs and thymus (6). Mutations in parts. The nascent Notch1 peptide is infarcts and leukoencephalopathy). human Jagged1 underlie Alagille syn- cleaved into 2 domains in the trans- CADASIL is an adult-onset neurologic drome, a dominant congenital disorder Golgi network, and appears on the cell disorder (average age of onset is 45 associated with abnormalities of the surface as an extracellular protein com- years) characterized by recurrent liver, heart, skeleton, eye, and face (7, 8). plexed with an integral membrane pro- strokes and dementia. Through posi- In general, the nature of the mutations tional cloning, Notch3 was found to be in this disorder suggests that haploin- the gene responsible for the disorder sufficiency for Jagged1 causes disease, (1), and mutations have been demon- because most of the mutations truncate strated in more than 90% of CADASIL the Jagged1 open reading frame or delete Perhaps mutant Notch3 patients (1, 2). The highly conserved the gene entirely (9, 10). molecules sop up ligand Notch signaling pathway was original- The adult-onset character of without transmitting a signal, ly identified and studied in the fruit fly CADASIL contrasts with the develop- Drosophila melanogaster. The name mental abnormalities associated with dominantly inhibiting the “Notch” derives from the characteristic mutations in the other Notch signaling normal pathway. notched wing found in flies carrying pathway genes studied to date. The only 1 functioning copy of the gene. Notch3 mutations seen in patients with Homozygous Notch mutations are CADASIL are transmitted in a domi- tein that consists of the original trans- lethal, and affected embyros have severe nant fashion, but unlike Alagille syn- membrane segment and the abnormalities, including an excess of drome, CADASIL does not seem to arise intracellular domain (3). On stimula- neural cells (3). A large body of work in from haploinsufficiency. Most tion of the receptor by ligand, the intra- the fruit fly, the nematode Caenorhabdi- CADASIL patients have a missense cellular domain translocates into the tis elegans, and more recently in verte- mutation leading to addition or loss of nucleus, where it mediates downstream brates has revealed that this pathway a cysteine residue within 1 of the 34 effects in conjunction with intercellu- plays a prominent role in development EGF-like repeats (2) in the Notch3 pro- lar regulatory proteins (13). Levels of by contributing to the determination of tein. The EGF-like repeats consist of the intracellular domain of Notch3 are cell fate in many different tissues (3). 40–50 amino acids, and are found in a not elevated in CADASIL tissue (12). The study of the effects of mutations large number of extracellular proteins Presumably, during or after normal in members of this pathway and their with diverse functions. These invariably Notch signaling, the extracellular pro- roles in human disease is in its infancy. contain 6 conserved cysteine residues teins must be cleared from the cell Of the 4 human Notch genes (Notch1, 2, that form 3 disulfide bonds, which are membrane. Little is known about this 3, and 4), only Notch1 and Notch3 have believed to be important for protein sta- process in vertebrates, but in Drosophi- been implicated in human disease, and bilization and protein-protein interac- la, normal Notch signaling requires the only Notch3 has been associated with tion (11). Notch3 mutations in CADASIL functioning of the protein dynamin, germline mutations that cause inherit- patients all lead to an odd number of which is required for endocytosis of the ed disease. Notch1 (previously called cysteine residues in the affected EGF receptor (14). TAN-1, for translocation-associated domain, which would be predicted to Is CADASIL caused by a defect in Notch1) has been shown to be involved disrupt the canonical disulfide pairing. Notch signaling, or by an inability to The Journal of Clinical Investigation | March 2000 | Volume 105 | Number 5 561 effectively remove the extracellular Alzheimer’s disease (AD1), missense phoblastic neoplasms. Cell. 66:649–661. domain from the membrane? Do the mutations in the amyloid precursor 5. Kusumi, K., et al. 1998. The mouse pudgy muta- tion disrupts Delta homologue Dll3 and initia- missense mutations seen in CADASIL protein lead to its abnormal accumula- tion of early somite boundaries. Nat. Genet. patients block endocytosis of the Notch tion (16). Furthermore, in some fami- 19:274–278. receptor? The common features of the lies, Parkinson’s disease is associated 6. Jiang, R., et al. 1999. Defects in limb, craniofacial, α and thymic development in Jagged2 mutant CADASIL mutations and the fact that with missense mutations in -synucle- mice. Genes Dev. 12:1046–1057. none of the patients studied to date car- in and the presence of proteinaceous 7. Li, L., et al. 1997. Alagille syndrome is caused by ries an obvious null allele of Notch3 sug- cytoplasmic inclusions known as Lewy mutations in human Jagged1, which encodes a lig- and for Notch1. Nat. Genet. 16:243–251. gest that this disease does not arise sim- bodies (17). Huntington’s disease arises 8. Oda, T., et al. 1997. Mutations in the human ply from loss of Notch signaling. from an expansion of a nucleotide Jagged1 gene are responsible for Alagille syn- Further experiments are needed to triplet repeat at the DNA level, which drome. Nat. Genet. 16:235–242. determine if the mutant Notch3 mole- results in synthesis of huntingtin pro- 9. Krantz, I.D., et al. 1998. Spectrum and frequency of Jagged1 (JAG1) mutations in Alagille syn- cule can respond to ligand and transmit tein containing an abnormal polyglut- drome patients and their families. Am. J. Hum. a signal. This will require analysis of amine tract. The mutant huntingtin Genet. 62:1361–1369. these mutants in an in vitro assay molecule also forms protein aggregates 10. Crosnier, C., et al. 1999. Analysis of mutations of the Jagged1 gene in patients with Alagille syn- designed to measure downstream sig- (18), although the role of these aggre- drome: evidence for most cases being sporadic. naling of stimulated Notch3, which is gates in pathogenesis is hotly debated. Gastroenterology. 116:1141–1148. not currently available. Even if the Multiple lines of evidence suggest 11. Campbell, I.D., and Bork, P. 1993. Epidermal growth factor-like module. Curr. Opin. Struct. Biol. mutant molecules prove inactive in that Notch signaling is important in 3:385–392.
Recommended publications
  • Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms
    Journal of Clinical Medicine Review Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms 1,2, 1, 3, 4 Claudia von Arx y , Monica Capozzi y, Elena López-Jiménez y, Alessandro Ottaiano , Fabiana Tatangelo 5 , Annabella Di Mauro 5, Guglielmo Nasti 4, Maria Lina Tornesello 6,* and Salvatore Tafuto 1,* On behalf of ENETs (European NeuroEndocrine Tumor Society) Center of Excellence of Naples, Italy 1 Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy 2 Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK 3 Cancer Cell Metabolism Group. Centre for Haematology, Immunology and Inflammation Department, Imperial College London, London W12 0HS, UK 4 SSD Innovative Therapies for Abdominal Metastases—Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS—Fondazione “G. Pascale”, 80131 Naples, Italy 5 Department of Pathology, Istituto Nazionale Tumori, IRCCS—Fondazione “G. Pascale”, 80131 Naples, Italy 6 Unit of Molecular Biology and Viral Oncology, Department of Research, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy * Correspondence: [email protected] (M.L.T.); [email protected] (S.T.) These authors contributed to this paper equally. y Received: 10 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of rare malignancies, mainly originating from hormone-secreting cells, which are widespread in human tissues. The identification of mutations in ATRX/DAXX genes in sporadic NENs, as well as the high burden of mutations scattered throughout the multiple endocrine neoplasia type 1 (MEN-1) gene in both sporadic and inherited syndromes, provided new insights into the molecular biology of tumour development.
    [Show full text]
  • It's T-ALL About Notch
    Oncogene (2008) 27, 5082–5091 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $30.00 www.nature.com/onc REVIEW It’s T-ALL about Notch RM Demarest1, F Ratti1 and AJ Capobianco Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA T-cell acute lymphoblastic leukemia (T-ALL) is an about T-ALL make it a more aggressive disease with a aggressive subset ofALL with poor clinical outcome poorer clinical outcome than B-ALL. T-ALL patients compared to B-ALL. Therefore, to improve treatment, it have a higher percentage of induction failure, and rate is imperative to delineate the molecular blueprint ofthis of relapse and invasion into the central nervous system disease. This review describes the central role that the (reviewed in Aifantis et al., 2008). The challenge to Notch pathway plays in T-ALL development. We also acquiring 100% remission in T-ALL treatment is the discuss the interactions between Notch and the tumor subset of patients (20–25%) whose disease is refractory suppressors Ikaros and p53. Loss ofIkaros, a direct to initial treatments or relapses after a short remission repressor ofNotch target genes, and suppression ofp53- period due to drug resistance. Therefore, it is imperative mediated apoptosis are essential for development of this to delineate the molecular blueprint that collectively neoplasm. In addition to the activating mutations of accounts for the variety of subtypes in T-ALL. This will Notch previously described, this review will outline allow for the development of targeted therapies that combinations ofmutations in pathways that contribute inhibit T-ALL growth by disrupting the critical path- to Notch signaling and appear to drive T-ALL develop- ways responsible for the neoplasm.
    [Show full text]
  • Coactivation of NF-Kb and Notch Signaling Is Sufficient to Induce B
    Regular Article LYMPHOID NEOPLASIA Coactivation of NF-kB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion Downloaded from https://ashpublications.org/blood/article-pdf/135/2/108/1550992/bloodbld2019001438.pdf by UNIV OF IOWA LIBRARIES user on 20 February 2020 Yan Xiu,1,* Qianze Dong,1,2,* Lin Fu,1,2 Aaron Bossler,1 Xiaobing Tang,1,2 Brendan Boyce,3 Nicholas Borcherding,1 Mariah Leidinger,1 Jose´ Luis Sardina,4,5 Hai-hui Xue,6 Qingchang Li,2 Andrew Feldman,7 Iannis Aifantis,8 Francesco Boccalatte,8 Lili Wang,9 Meiling Jin,9 Joseph Khoury,10 Wei Wang,10 Shimin Hu,10 Youzhong Yuan,11 Endi Wang,12 Ji Yuan,13 Siegfried Janz,14 John Colgan,15 Hasem Habelhah,1 Thomas Waldschmidt,1 Markus Muschen,¨ 9 Adam Bagg,16 Benjamin Darbro,17 and Chen Zhao1,18 1Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA; 2Department of Pathology, China Medical University, Shenyang, China; 3Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY; 4Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; 5Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Barcelona, Spain; 6Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA; 7Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN; 8Department of Pathology, NYU School of Medicine,
    [Show full text]
  • Notch Signaling: Simplicity in Design, Versatility in Function Emma R
    REVIEW 3593 Development 138, 3593-3612 (2011) doi:10.1242/dev.063610 © 2011. Published by The Company of Biologists Ltd Notch signaling: simplicity in design, versatility in function Emma R. Andersson1, Rickard Sandberg2 and Urban Lendahl1,* Summary different cell types and organs have recently been reviewed (Liu et Notch signaling is evolutionarily conserved and operates in al., 2010) and are summarized in Table 1. In keeping with its many cell types and at various stages during development. important role in many cell types, the mutation of Notch genes Notch signaling must therefore be able to generate leads to diseases in various organs and tissues (Table 2). These appropriate signaling outputs in a variety of cellular contexts. studies highlight the fact that the Notch pathway must be able to This need for versatility in Notch signaling is in apparent elicit appropriate responses in many spatially and temporally contrast to the simple molecular design of the core pathway. distinct cell contexts. Here, we review recent studies in nematodes, Drosophila and In this review, we address the conundrum of how this functional vertebrate systems that begin to shed light on how versatility diversity is compatible with the simplistic molecular design of the in Notch signaling output is generated, how signal strength is Notch signaling pathway. In particular, we focus on recent modulated, and how cross-talk between the Notch pathway observations, in both vertebrate and invertebrate systems, that and other intracellular signaling systems, such as the Wnt, begin to shed light on how diversity is generated at different steps hypoxia and BMP pathways, contributes to signaling diversity.
    [Show full text]
  • NOTCH1 Gene Notch 1
    NOTCH1 gene notch 1 Normal Function The NOTCH1 gene provides instructions for making a protein called Notch1, a member of the Notch family of receptors. Receptor proteins have specific sites into which certain other proteins, called ligands, fit like keys into locks. Attachment of a ligand to the Notch1 receptor sends signals that are important for normal development of many tissues throughout the body, both before birth and after. Notch1 signaling helps determine the specialization of cells into certain cell types that perform particular functions in the body (cell fate determination). It also plays a role in cell growth and division (proliferation), maturation (differentiation), and self-destruction (apoptosis). The protein produced from the NOTCH1 gene has such diverse functions that the gene is considered both an oncogene and a tumor suppressor. Oncogenes typically promote cell proliferation or survival, and when mutated, they have the potential to cause normal cells to become cancerous. In contrast, tumor suppressors keep cells from growing and dividing too fast or in an uncontrolled way, preventing the development of cancer; mutations that impair tumor suppressors can lead to cancer development. Health Conditions Related to Genetic Changes Adams-Oliver syndrome At least 15 mutations in the NOTCH1 gene have been found to cause Adams-Oliver syndrome, a condition characterized by areas of missing skin (aplasia cutis congenita), usually on the scalp, and malformations of the hands and feet. These mutations are usually inherited and are present in every cell of the body. Some of the NOTCH1 gene mutations involved in Adams-Oliver syndrome lead to production of an abnormally short protein that is likely broken down quickly, causing a shortage of Notch1.
    [Show full text]
  • Notch Signaling in Breast Cancer: a Role in Drug Resistance
    cells Review Notch Signaling in Breast Cancer: A Role in Drug Resistance McKenna BeLow 1 and Clodia Osipo 1,2,3,* 1 Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA; [email protected] 2 Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60513, USA 3 Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60513, USA * Correspondence: [email protected]; Tel.: +1-708-327-2372 Received: 12 September 2020; Accepted: 28 September 2020; Published: 29 September 2020 Abstract: Breast cancer is a heterogeneous disease that can be subdivided into unique molecular subtypes based on protein expression of the Estrogen Receptor, Progesterone Receptor, and/or the Human Epidermal Growth Factor Receptor 2. Therapeutic approaches are designed to inhibit these overexpressed receptors either by endocrine therapy, targeted therapies, or combinations with cytotoxic chemotherapy. However, a significant percentage of breast cancers are inherently resistant or acquire resistance to therapies, and mechanisms that promote resistance remain poorly understood. Notch signaling is an evolutionarily conserved signaling pathway that regulates cell fate, including survival and self-renewal of stem cells, proliferation, or differentiation. Deregulation of Notch signaling promotes resistance to targeted or cytotoxic therapies by enriching of a small population of resistant cells, referred to as breast cancer stem cells, within the bulk tumor; enhancing stem-like features during the process of de-differentiation of tumor cells; or promoting epithelial to mesenchymal transition. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance through reduction or elimination of breast cancer stem cells. However, Notch inhibitors have yet to be clinically approved for the treatment of breast cancer, mainly due to dose-limiting gastrointestinal toxicity.
    [Show full text]
  • 3641 Molecular and Other Predictors for Infertility in Patients with Va
    [Frontiers in Bioscience 14, 3641-3672, January 1, 2009] Molecular and other predictors for infertility in patients with varicoceles Susan Benoff1,2,3,5, Joel L. Marmar4, Ian R. Hurley1 1Fertility Research Laboratories, Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, 2Department of Obstetrics and Gynecology, North Shore University Hospital, Manhasset, New York, 3Departments of Obstetrics and Gynecology and Cell Biology, New York University School of Medicine, New York, New York, 4Department of Urology, Robert Wood Johnson School of Medicine, Camden, New Jersey, 5350 Community Drive, Room 125, Manhasset, New York 11030 TABLE OF CONTENTS 1. Abstract 2. Definition 3. Frequency of occurrence and presentation 3.1. Association with infertility and current treatment 4. The varicocele controversy 5. Potential mechanisms 6. Deficits already identified 6.1. Scrotal/testicular hyperthermia 6.2. Increased venous pressures 6.3. Accumulation of toxic substances 6.3.1 Intrinsic toxins 6.3.2. Extrinsic toxins 6.4. Hypoxia 6.5. Hormonal imbalance 6.6. Additional molecular changes 7. Use of animal models 7.1. Experimental left varicocele 7.1.1. Recapitulation of effects observed in human males with varicoceles 7.1.2. Additional changes not yet reported in human subjects 7.2. Elevated temperature 7.3. Effect of toxins 7.3.1. A potential role for genetics in sensitivity or resistance to cadmium-induced testicular damage 7.4. Androgen deprivation 8. Medical therapies 8.1. Oxidative stress 8.1.1. Antioxidants 8.1.2. Supplementary zinc 8.1.3. Anti-inflammatory drugs 8.2.
    [Show full text]
  • Notch3 Intracellular Domain Accumulates in Hepg2 Cell Line
    ANTICANCER RESEARCH 26: 2123-2128 (2006) Notch3 Intracellular Domain Accumulates in HepG2 Cell Line CATIA GIOVANNINI1,2, MICHELA LACCHINI2, LAURA GRAMANTIERI1,2, PASQUALE CHIECO2 and LUIGI BOLONDI1,2 1Department of Internal Medicine and Gastroenterology, University of Bologna and S. Orsola-Malpighi University Hospital, 40138 Bologna; 2Center for Applied Biomedical Research (CRBA), S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy Abstract. Background: By mediating local cell-cell epithelial growth factor repeats and a lin-12 Notch repeat interactions, the Notch signaling pathway seems to control a as well as a transmembrane subunit (NTM 97-120 kDa) variety of processes from cell fate decisions during containing a short extracellular fragment and an development, to stem cell renewal and to differentiation in intracellular domain (NICD 65-110 kDa) (1). These non- many adult tissues. Hence, perturbed Notch signaling may covalently associated subunits are presented as a be involved both in the development and the spread of heterodimeric functional receptor at the cell surface. Even cancer. The expression and the functional role of some though ligand-independent activation of the Notch major components of the Notch signaling pathway in signaling pathway has been described (2), Notch receptors human hepatocellular carcinoma (HCC) are poorly are mainly activated by transmembrane ligands expressed characterized. Materials and Methods: Notch3, HES1, on the surface of neighboring cells. Five ligands of Notch Jagged1 and Delta1 were analyzed both at the RNA and receptors have been described in vertebrates: Delta-like 1, protein levels in the HepG2 liver cell line derived from 3 and 4 and Jagged 1 and 2 (3, 4).
    [Show full text]
  • DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet
    Page 1 of 41 Diabetes DLL1- and DLL4-mediated Notch signaling is essential for adult pancreatic islet homeostasis (running title –Role of Delta ligands in adult pancreas) Marina Rubey1,2,6*, Nirav Florian Chhabra1,2*, Daniel Gradinger1,2,7, Adrián Sanz-Moreno1, Heiko Lickert2,4,5, Gerhard K. H. Przemeck1,2, Martin Hrabě de Angelis1,2,3** 1 Helmholtz Zentrum München, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany 2 German Center for Diabetes Research (DZD), Neuherberg, Germany 3 Chair of Experimental Genetics, Centre of Life and Food Sciences, Weihenstephan, Technische Universität München, Freising, Germany 4 Helmholtz Zentrum München, Institute of Diabetes and Regeneration Research and Institute of Stem Cell Research, Neuherberg, Germany 5 Technische Universität München, Medical Faculty, Munich, Germany 6 Present address Marina Rubey: WMC Healthcare GmbH, Munich, Germany 7 Present address Daniel Gradinger: PSI CRO AG, Munich, Germany *These authors contributed equally **Corresponding author: Prof. Dr. Martin Hrabě de Angelis, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Ingolstädter Landstr.1, 85764 Neuherberg, Germany. Phone: +49-89-3187-3502. Fax: +49- 89-3187-3500. E-mail address: [email protected] Word count – 4088 / Figures – 7 Diabetes Publish Ahead of Print, published online February 6, 2020 Diabetes Page 2 of 41 Abstract Genes of the Notch signaling pathway are expressed in different cell types and organs at different time points during embryonic development and adulthood. The Notch ligand Delta- like 1 (DLL1) controls the decision between endocrine and exocrine fates of multipotent progenitors in the developing pancreas, and loss of Dll1 leads to premature endocrine differentiation.
    [Show full text]
  • Examining the Role of Deltalike3 in Notch Signaling During Vertebrate Segmentation
    Examining the role of Deltalike3 in Notch Signaling during Vertebrate Segmentation A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for graduation with distinction in Molecular Genetics in the undergraduate colleges of The Ohio State University by Meaghan Ebetino The Ohio State University June 2008 Project Advisor: Dr. Susan Cole, Department of Molecular Genetics 2 Table of Contents I. Introduction p. 3-22 II. Results p. 22-34 III. Discussion p. 35-39 IV. Materials and Methods p. 39-42 V. References p. 43-44 3 I. Introduction Vertebrae segmentation is an embryological process regulated in part by the Notch signaling pathway. The unperturbed temporal and spatial activities of the genes involved in the Notch signaling pathway are responsible for proper skeletal phenotypes of vertebrates. The activity of Deltalike3 (Dll3), a Notch family member has been suggested to be important in both the clock and patterning activities of the Notch signaling pathway. However, the importance of Dll3 in the clock or patterning activities of the Notch signaling for proper segmentation events to occur has not been examined. Loss of Deltalike3 expression or activity in mice results in severe vertebral abnormalities, which resemble the phenotype of mice that lack the gene Lunatic fringe (Lfng), proposed to be an inhibitor of Notch. Despite the phenotypic evidence suggesting that Dll3 is an inhibitor of Notch like Lfng, there is other conflicting data suggesting that Dll3 may act either as an inhibitor or activator of Notch. My project intends to examine the role of Dll3 as an inhibitor or activator of Notch, to determine whether the Dll3 has a more important role in the clock or patterning activities of Notch signaling, and to analyze the possibility for modifier effects between Dll3 and other Notch family members.
    [Show full text]
  • NOTCH1–RBPJ Complexes Drive Target Gene Expression Through Dynamic Interactions with Superenhancers
    NOTCH1–RBPJ complexes drive target gene expression through dynamic interactions with superenhancers Hongfang Wanga,1, Chongzhi Zangb,1, Len Taingb, Kelly L. Arnettc, Yinling Joey Wonga, Warren S. Peard, Stephen C. Blacklowc, X. Shirley Liub,2, and Jon C. Astera,2 aDepartment of Pathology, Brigham and Women’s Hospital, Boston, MA 02115; bDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215; cDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215; and dDepartment of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Edited by Richard A. Flavell, Yale School of Medicine and Howard Hughes Medical Institute, New Haven, CT, and approved November 27, 2013 (received for review August 8, 2013) The main oncogenic driver in T-lymphoblastic leukemia is NOTCH1, and that the H3K27ac mark is characteristic of active enhancers which activates genes by forming chromatin-associated Notch and correlates with transcription activation (6–9). transcription complexes. Gamma-secretase-inhibitor treatment pre- In cancers such as T-LL, gain-of-function mutations in NOTCH1 vents NOTCH1 nuclear localization, but most genes with NOTCH1- cause excessive Notch activation and exaggerated expression of binding sites are insensitive to gamma-secretase inhibitors. Here, oncogenic target genes. To further elucidate how NOTCH1 reg- we demonstrate that fewer than 10% of NOTCH1-binding sites ulates the transcriptomes of T-LL cells, we recently used chromatin show dynamic changes in NOTCH1 occupancy when T-lympho- immunoprecipitation (ChIP)-Seq to identify RBPJ–NOTCH1- blastic leukemia cells are toggled between the Notch-on and -off binding sites genomewide in Notch-“addicted” murine and hu- states with gamma-secretase inhibiters.
    [Show full text]
  • Dll4-Fc, an Inhibitor of Dll4-Notch Signaling, Suppresses Liver Metastasis of Small Cell Lung Cancer Cells Through the Downregulation of the NF-Kb Activity
    Published OnlineFirst September 18, 2012; DOI: 10.1158/1535-7163.MCT-12-0640 Molecular Cancer Therapeutic Discovery Therapeutics Dll4-Fc, an Inhibitor of Dll4-Notch Signaling, Suppresses Liver Metastasis of Small Cell Lung Cancer Cells through the Downregulation of the NF-kB Activity Takuya Kuramoto1, Hisatsugu Goto1, Atsushi Mitsuhashi1, Sho Tabata1, Hirohisa Ogawa2, Hisanori Uehara2, Atsuro Saijo1, Soji Kakiuchi1, Yoichi Maekawa3, Koji Yasutomo3, Masaki Hanibuchi1, Shin-ichi Akiyama1, Saburo Sone1, and Yasuhiko Nishioka1 Abstract Notch signaling regulates cell-fate decisions during development and postnatal life. Little is known, however, about the role of Delta-like-4 (Dll4)-Notch signaling between cancer cells, or how this signaling affects cancer metastasis. We, therefore, assessed the role of Dll4-Notch signaling in cancer metastasis. We generated a soluble Dll4 fused to the IgG1 constant region (Dll4-Fc) that acts as a blocker of Dll4-Notch signaling and introduced it into human small cell lung cancer (SCLC) cell lines expressing either high levels (SBC-3 and H1048) or low levels (SBC-5) of Dll4. The effects of Dll4-Fc on metastasis of SCLC were evaluated using a mouse model. Although Dll4-Fc had no effect on the liver metastasis of SBC-5, the number of liver metastasis inoculated with SBC-3 and H1048 cells expressing Dll4-Fc was significantly lower than that injected with control cells. To study the molecular mechanisms of the effects of Dll4-Fc on liver metastasis, a PCR array analysis was conducted. Because the expression of NF-kB target genes was affected by Dll4-Fc, we conducted an electrophoretic mobility shift assay and observed that NF-kB activities, both with and without stimulation by TNF-a, were downregulated in Dll4-Fc–overexpressing SBC-3 and H1048 cells compared with control cells.
    [Show full text]