Detection of Co-Orbital Planets by Combining Transit and Radial-Velocity Measurements A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1912.09192V2 [Astro-Ph.EP] 24 Feb 2020
Draft version February 25, 2020 Typeset using LATEX preprint style in AASTeX62 Photometric analyses of Saturn's small moons: Aegaeon, Methone and Pallene are dark; Helene and Calypso are bright. M. M. Hedman,1 P. Helfenstein,2 R. O. Chancia,1, 3 P. Thomas,2 E. Roussos,4 C. Paranicas,5 and A. J. Verbiscer6 1Department of Physics, University of Idaho, Moscow, ID 83844 2Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca NY 14853 3Center for Imaging Science, Rochester Institute of Technology, Rochester NY 14623 4Max Planck Institute for Solar System Research, G¨ottingen,Germany 37077 5APL, John Hopkins University, Laurel MD 20723 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904 ABSTRACT We examine the surface brightnesses of Saturn's smaller satellites using a photometric model that explicitly accounts for their elongated shapes and thus facilitates compar- isons among different moons. Analyses of Cassini imaging data with this model reveals that the moons Aegaeon, Methone and Pallene are darker than one would expect given trends previously observed among the nearby mid-sized satellites. On the other hand, the trojan moons Calypso and Helene have substantially brighter surfaces than their co-orbital companions Tethys and Dione. These observations are inconsistent with the moons' surface brightnesses being entirely controlled by the local flux of E-ring par- ticles, and therefore strongly imply that other phenomena are affecting their surface properties. The darkness of Aegaeon, Methone and Pallene is correlated with the fluxes of high-energy protons, implying that high-energy radiation is responsible for darkening these small moons. Meanwhile, Prometheus and Pandora appear to be brightened by their interactions with nearby dusty F ring, implying that enhanced dust fluxes are most likely responsible for Calypso's and Helene's excess brightness. -
Cassini Update
Cassini Update Dr. Linda Spilker Cassini Project Scientist Outer Planets Assessment Group 22 February 2017 Sols%ce Mission Inclina%on Profile equator Saturn wrt Inclination 22 February 2017 LJS-3 Year 3 Key Flybys Since Aug. 2016 OPAG T124 – Titan flyby (1584 km) • November 13, 2016 • LAST Radio Science flyby • One of only two (cf. T106) ideal bistatic observations capturing Titan’s Northern Seas • First and only bistatic observation of Punga Mare • Western Kraken Mare not explored by RSS before T125 – Titan flyby (3158 km) • November 29, 2016 • LAST Optical Remote Sensing targeted flyby • VIMS high-resolution map of the North Pole looking for variations at and around the seas and lakes. • CIRS last opportunity for vertical profile determination of gases (e.g. water, aerosols) • UVIS limb viewing opportunity at the highest spatial resolution available outside of occultations 22 February 2017 4 Interior of Hexagon Turning “Less Blue” • Bluish to golden haze results from increased production of photochemical hazes as north pole approaches summer solstice. • Hexagon acts as a barrier that prevents haze particles outside hexagon from migrating inward. • 5 Refracting Atmosphere Saturn's• 22unlit February rings appear 2017 to bend as they pass behind the planet’s darkened limb due• 6 to refraction by Saturn's upper atmosphere. (Resolution 5 km/pixel) Dione Harbors A Subsurface Ocean Researchers at the Royal Observatory of Belgium reanalyzed Cassini RSS gravity data• 7 of Dione and predict a crust 100 km thick with a global ocean 10’s of km deep. Titan’s Summer Clouds Pose a Mystery Why would clouds on Titan be visible in VIMS images, but not in ISS images? ISS ISS VIMS High, thin cirrus clouds that are optically thicker than Titan’s atmospheric haze at longer VIMS wavelengths,• 22 February but optically 2017 thinner than the haze at shorter ISS wavelengths, could be• 8 detected by VIMS while simultaneously lost in the haze to ISS. -
Design of Low-Altitude Martian Orbits Using Frequency Analysis A
Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noullez, K. Tsiganis To cite this version: A. Noullez, K. Tsiganis. Design of Low-Altitude Martian Orbits using Frequency Analysis. Advances in Space Research, Elsevier, 2021, 67, pp.477-495. 10.1016/j.asr.2020.10.032. hal-03007909 HAL Id: hal-03007909 https://hal.archives-ouvertes.fr/hal-03007909 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noulleza,∗, K. Tsiganisb aUniversit´eC^oted'Azur, Observatoire de la C^oted'Azur, CNRS, Laboratoire Lagrange, bd. de l'Observatoire, C.S. 34229, 06304 Nice Cedex 4, France bSection of Astrophysics Astronomy & Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece Abstract Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies | or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies | are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony's Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors. -
The Orbits of Saturn's Small Satellites Derived From
The Astronomical Journal, 132:692–710, 2006 August A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE ORBITS OF SATURN’S SMALL SATELLITES DERIVED FROM COMBINED HISTORIC AND CASSINI IMAGING OBSERVATIONS J. N. Spitale CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301; [email protected] R. A. Jacobson Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 C. C. Porco CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 and W. M. Owen, Jr. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 Received 2006 February 28; accepted 2006 April 12 ABSTRACT We report on the orbits of the small, inner Saturnian satellites, either recovered or newly discovered in recent Cassini imaging observations. The orbits presented here reflect improvements over our previously published values in that the time base of Cassini observations has been extended, and numerical orbital integrations have been performed in those cases in which simple precessing elliptical, inclined orbit solutions were found to be inadequate. Using combined Cassini and Voyager observations, we obtain an eccentricity for Pan 7 times smaller than previously reported because of the predominance of higher quality Cassini data in the fit. The orbit of the small satellite (S/2005 S1 [Daphnis]) discovered by Cassini in the Keeler gap in the outer A ring appears to be circular and coplanar; no external perturbations are appar- ent. Refined orbits of Atlas, Prometheus, Pandora, Janus, and Epimetheus are based on Cassini , Voyager, Hubble Space Telescope, and Earth-based data and a numerical integration perturbed by all the massive satellites and each other. -
Abstracts of the 50Th DDA Meeting (Boulder, CO)
Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011). -
Planets Days Mini-Conference (Friday August 24)
Planets Days Mini-Conference (Friday August 24) Session I : 10:30 – 12:00 10:30 The Dawn Mission: Latest Results (Christopher Russell) 10:45 Revisiting the Oort Cloud in the Age of Large Sky Surveys (Julio Fernandez) 11:00 25 years of Adaptive Optics in Planetary Astronomy, from the Direct Imaging of Asteroids to Earth-Like Exoplanets (Franck Marchis) 11:15 Exploration of the Jupiter Trojans with the Lucy Mission (Keith Noll) 11:30 The New and Unexpected Venus from Akatsuki (Javier Peralta) 11:45 Exploration of Icy Moons as Habitats (Athena Coustenis) Session II: 13:30 – 15:00 13:30 Characterizing ExOPlanet Satellite (CHEOPS): ESA's first s-class science mission (Kate Isaak) 13:45 The Habitability of Exomoons (Christopher Taylor) 14:00 Modelling the Rotation of Icy Satellites with Application to Exoplanets (Gwenael Boue) 14:15 Novel Approaches to Exoplanet Life Detection: Disequilibrium Biosignatures and Their Detectability with the James Webb Space Telescope (Joshua Krissansen-Totton) 14:30 Getting to Know Sub-Saturns and Super-Earths: High-Resolution Spectroscopy of Transiting Exoplanets (Ray Jayawardhana) 14:45 How do External Giant Planets Influence the Evolution of Compact Multi-Planet Systems? (Dong Lai) Session III: 15:30 – 18:30 15:30 Titan’s Global Geology from Cassini (Rosaly Lopes) 15:45 The Origins Space Telescope and Solar System Science (James Bauer) 16:00 Relationship Between Stellar and Solar System Organics (Sun Kwok) 16:15 Mixing of Condensible Constituents with H/He During Formation of Giant Planets (Jack Lissauer) -
PDS4 Context List
Target Context List Name Type LID 136108 HAUMEA Planet urn:nasa:pds:context:target:planet.136108_haumea 136472 MAKEMAKE Planet urn:nasa:pds:context:target:planet.136472_makemake 1989N1 Satellite urn:nasa:pds:context:target:satellite.1989n1 1989N2 Satellite urn:nasa:pds:context:target:satellite.1989n2 ADRASTEA Satellite urn:nasa:pds:context:target:satellite.adrastea AEGAEON Satellite urn:nasa:pds:context:target:satellite.aegaeon AEGIR Satellite urn:nasa:pds:context:target:satellite.aegir ALBIORIX Satellite urn:nasa:pds:context:target:satellite.albiorix AMALTHEA Satellite urn:nasa:pds:context:target:satellite.amalthea ANTHE Satellite urn:nasa:pds:context:target:satellite.anthe APXSSITE Equipment urn:nasa:pds:context:target:equipment.apxssite ARIEL Satellite urn:nasa:pds:context:target:satellite.ariel ATLAS Satellite urn:nasa:pds:context:target:satellite.atlas BEBHIONN Satellite urn:nasa:pds:context:target:satellite.bebhionn BERGELMIR Satellite urn:nasa:pds:context:target:satellite.bergelmir BESTIA Satellite urn:nasa:pds:context:target:satellite.bestia BESTLA Satellite urn:nasa:pds:context:target:satellite.bestla BIAS Calibrator urn:nasa:pds:context:target:calibrator.bias BLACK SKY Calibration Field urn:nasa:pds:context:target:calibration_field.black_sky CAL Calibrator urn:nasa:pds:context:target:calibrator.cal CALIBRATION Calibrator urn:nasa:pds:context:target:calibrator.calibration CALIMG Calibrator urn:nasa:pds:context:target:calibrator.calimg CAL LAMPS Calibrator urn:nasa:pds:context:target:calibrator.cal_lamps CALLISTO Satellite urn:nasa:pds:context:target:satellite.callisto -
Enceladus's Measured Physical Libration Requires a Global Subsurface Ocean
Enceladus’s measured physical libration requires a global subsurface ocean P. C. Thomas1*, R. Tajeddine1, M. S. Tiscareno1,2, J. A. Burns1,3, J. Joseph1, T. J. Loredo1 , P. Helfenstein1, C. Porco4, 1Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 USA 2Carl Sagan Center for the Study of Life in the Universe, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 3College of Engineering, Cornell University, Ithaca, NY 14853 USA 4Space Science Institute, Boulder, CO 80304, USA *Corresponding author E-mail:[email protected] Several planetary satellites apparently have subsurface seas that are of great interest for, among other reasons, their possible habitability. The geologically diverse Saturnian satellite Enceladus vigorously vents liquid water and vapor from fractures within a south polar depression and thus must have a liquid reservoir or active melting. However, the extent and location of any subsurface liquid region is not directly observable. We use measurements of control points across the surface of Enceladus accumulated over seven years of spacecraft observations to determine the satellite’s precise rotation state, finding a forced physical libration of 0.120 ± 0.014° (2σ). This value is too large to be consistent with Enceladus’s core being rigidly connected to its surface, and thus implies the presence of a global ocean rather than a localized polar sea. The maintenance of a global ocean within Enceladus is problematic according to many thermal models and so may constrain satellite properties or require a surprisingly dissipative Saturn. 1. Introduction Enceladus is a 500-km-diameter satellite of mean density 1609 ± 5 kg-m-3 orbiting Saturn every 1.4 days in a slightly eccentric (e = 0.0047) orbit (Porco et al., 2006). -
Saturn's Moons and Rings Ring Overview What Creates the Rings?
Saturn's Moons and Rings • We have already discussed a few details of Saturn's ring system • It is impossible to fully discuss the rings without mentioning the interactions with Saturn's many moons •_ • The rings themselves may have been formed from a current or past moon Ring Overview • The rings were named alphabetically in order of discovery •_ • The D ring is a faint ring close to Saturn's cloud tops • The F and G rings and faint and narrow, outside the A ring • The E ring is a large, low density ring in a more distant orbit around Saturn What Creates the Rings? • One clue to ring formation is where they are located compared to their host planet • For each of the 4 outer planets, rings are usually not seen anywhere past about 2.4 times the planet's radius •_ 1 The Roche Limit •_ • Remember that gravity acts to squeeze moons that are close to the planet • If the moon comes close enough, the moon is stretched to the point that it is destroyed Ring Formation • The fact that Saturn's rings are inside the Roche limit explains why they do not clump to form a new moon • How did they form in the first place? – They could possibly be left over material from the formation of Saturn –_ – A comet (like Shoemaker-Levy 9) could have come close to Saturn and broken up around the planet – An impact with one of Saturn's current or past moons may have generated the material in the rings How Old Are The Rings? • _ • The rings are very bright, suggesting they haven't been covered by lots of interplanetary dust over time • The interactions and disturbances -
Horsing Around on Saturn
Horsing Around on Saturn Robert J. Vanderbei Operations Research and Financial Engineering, Princeton University [email protected] ABSTRACT Based on simple statistical mechanical models, the prevailing view of Sat- urn’s rings is that they are unstable and must therefore have been formed rather recently. In this paper, we argue that Saturn’s rings and inner moons are in much more stable orbits than previously thought and therefore that they likely formed together as part of the initial formation of the solar system. To make this argument, we give a detailed description of so-called horseshoe orbits and show that this horseshoeing phenomenon greatly stabilizes the rings of Saturn. This paper is part of a collaborative effort with E. Belbruno and J.R. Gott III. For a description of their part of the work, see their papers in these proceedings. 1. Introduction The currently accepted view (see, e.g., Goldreich and Tremaine (1982)) of the formation of Saturn’s rings is that a moon-sized object wandered inside Saturn’s Roche limit and was torn apart by tidal forces. The resulting array of remnant masses was dispersed and formed the rings we see today. In this model, the system dynamics are treated as a turbulent flow with no explicit mention of the law of gravitation. The ring shape is presumed to be maintained by the coralling effect of a few of the inner moons acting as so-called shepherds. Of course, a simpler explanation would be that the rings formed along with the planets and their moons as they condensed out of the solar nebula. -
Cassini's Coolest Results for Icy Moons During the Past Two Years
Cassini’s Coolest Results for Icy Moons during the Past Two Years Dr. Bonnie J. Buratti Satellite Orbiter Science Team (SOST) Lead Visual Infrared Mapping Spectrometer (VIMS) Team Senior Research Scientist Jet Propulsion Laboratory California Inst. of Technology Cassini Outreach (CHARM) Telecon August 23, 2016 Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. Summary of Talk • Review of targeted flybys of the last two years • Review of small moons (“rocks”) flybys • Scientific results • End-of-Mission: what’s coming up • Monitoring jets and plumes on Enceladus • Spectacular flybys of small moons The final flybys: Dione and Enceladus Flyby Object Date Distance Flavor Goal D4 Dione 06/16/15 516 km Fields&Dust Understand the particle environment D5 Dione 08/17/15 475 km Gravity Understand the interior of Dione E20 Enceladus 10/14/15 1842 km Imaging Map the N. Pole of Enceladus E21 Enceladus 10/28/15 53 km Fields&Dust Understand the particle environment E22 Enceladus 12/19/15 5003 Imaging Understand energy balance and change Small Moons (“Rocks”) Best-ever Flybys on Dec. 6, 2015 Prometheus: 86 km wide; 37,000 km away Atlas: 30 km; 32,000 km Epimetheus: 86 km; 35,000 km E22: the last Enceladus Flyby (5003 km) Dec. 19, 2015 A view of Enceladus southern Thermal image of Damascus Sulcus, region taken during Cassini’s one of the four Tiger Stripes near final close encounter with the the south pole. enigmatic moon. Saturn can be seen in the lower background. Image of Samarkand Sulci, obtained during the E22 flyby at a distance of about 12,000 km. -
Post-Main-Sequence Planetary System Evolution Rsos.Royalsocietypublishing.Org Dimitri Veras
Post-main-sequence planetary system evolution rsos.royalsocietypublishing.org Dimitri Veras Department of Physics, University of Warwick, Coventry CV4 7AL, UK Review The fates of planetary systems provide unassailable insights Cite this article: Veras D. 2016 into their formation and represent rich cross-disciplinary Post-main-sequence planetary system dynamical laboratories. Mounting observations of post-main- evolution. R. Soc. open sci. 3: 150571. sequence planetary systems necessitate a complementary level http://dx.doi.org/10.1098/rsos.150571 of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the Received: 23 October 2015 interpretation and modelling of currently known systems and Accepted: 20 January 2016 upcoming discoveries. 1. Introduction Subject Category: Decades of unsuccessful attempts to find planets around other Astronomy Sun-like stars preceded the unexpected 1992 discovery of planetary bodies orbiting a pulsar [1,2]. The three planets around Subject Areas: the millisecond pulsar PSR B1257+12 were the first confidently extrasolar planets/astrophysics/solar system reported extrasolar planets to withstand enduring scrutiny due to their well-constrained masses and orbits. However, a retrospective Keywords: historical analysis reveals even more surprises. We now know that dynamics, white dwarfs, giant branch stars, the eponymous celestial body that Adriaan van Maanen observed pulsars, asteroids, formation in the late 1910s [3,4]isanisolatedwhitedwarf(WD)witha metal-enriched atmosphere: direct evidence for the accretion of planetary remnants. These pioneering discoveries of planetary material around Author for correspondence: or in post-main-sequence (post-MS) stars, although exciting, Dimitri Veras represented a poor harbinger for how the field of exoplanetary e-mail: [email protected] science has since matured.