Math 412. Quotient Rings of Polynomial Rings Over a Field

Total Page:16

File Type:pdf, Size:1020Kb

Math 412. Quotient Rings of Polynomial Rings Over a Field (c)Karen E. Smith 2018 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. Math 412. Quotient Rings of Polynomial Rings over a Field. For this worksheet, F always denotes a fixed field, such as Q; R; C; or Zp for p prime. DEFINITION. Fix a polynomial f(x) 2 F[x]. Define two polynomials g; h 2 F[x] to be congruent modulo f if fj(g − h). We write [g]f for the set fg + kf j k 2 F[x]g of all polynomials congruent to g modulo f. We write F[x]=(f) for the set of all congruence classes of F[x] modulo f. The set F[x]=(f) has a natural ring structure called the Quotient Ring of F[x] by the ideal (f). CAUTION: The elements of F[x]=(f) are sets so the addition and multiplication, while induced by those in F[x], is a bit subtle. A. WARM UP. Fix a polynomial f(x) 2 F[x] of degree d > 0. (1) Discuss/review what it means that congruence modulo f is an equivalence relation on F[x]. (2) Discuss/review with your group why every congruence class [g]f contains a unique polynomial of degree less than d. What is the analogous fact for congruence classes in Z modulo n? 2 (3) Show that there are exactly four distinct congruence classes for Z2[x] modulo x + x. List them out, in set-builder notation. For each of the four, write it in the form [g]x2+x for two different g. (4) How many distinct congruence classes are there for Zp[x] modulo f, where f is a poly- nomial of degree d? (1) This means that it is reflexive (g is congruent to g), symmetric (if g is congruent to h then h is congruent to g, and transitive (if g is congruent to h and h is congruent to k, then g is congruent to k.) In this case, the equivalence relation partitions the set F[x] up into non-overlapping equivalence (congruence) classes. (2) Using the division algorithm, writing g = qf + r, we see that the remainder r is in the class [g]f , and we know deg r < deg f = d. There can’t be another polynomial r0 of degree less than d in 0 0 0 [g]f , because that r = g + q f for some q 2 F[x], which would violate the uniqueness part of the division algorithm. (3) These are [0] = [x2 + x] = f(x2 + x)h ; j h 2 F[x]g; [1] = [1 + x2 + x] = f1 + (x2 + x)h ; j h 2 F[x]g; [x] = [x2] = fx + (x2 + x)h ; j h 2 F[x]g; [x + 1] = [x2 + 1] = fx + 1 + (x2 + x)h ; j h 2 F[x]g. d d−1 d−2 (4) p , since we are counting the number of polynomials of the form ad−1x + ad−2x + ··· + a1x + a0, where there are p choices for each of the ai. B. RING STRUCTURE ON THE SET OF CONGRUENCE CLASSES F[x]=(f(x)): Fix a polynomial f(x) 2 F[x] of degree d > 0. 0 0 0 0 (1) Consider arbitrary g; h 2 F[x]. Suppose g 2 [g]f and h 2 [h]f . Prove that g + h 2 [g + h]f . (2) Explain how (1) allows us to define a well-defined binary operation (call it “addition”) on the set F[x]=(f(x)) of congruence classes. Note that the elements of F[x]=(f(x)) are sets and the notation [g]f is biased— you can represent this set by many different g—so you need to be careful. 2 0 0 1 0 0 (3) Suppose g 2 [g]f and h 2 [h]f . Prove that g h 2 [gh]f . (4) Explain how (3) allows us to define a well-defined binary operation (call it “multiplication”) on the set F[x]=(f(x)) of congruence classes. Why is this non-obvious? (5) Find elements in F[x]=(f(x)) that serve as additive and multiplicative identities for your operations in (2) and (4). (6) Discuss what needs to be checked to ensure that the operations defined in (2) and (4) make F[x]=(f(x)) into a commutative ring. Now, illustrate how to check one or two of the axioms, pointing out how they follow from the corresponding axioms in F[x]. Wiithout writing it all out, make sure everyone is confident how to prove that F[x]=(f(x)) is commutative ring. (1) Write g−g0 = fq for some q 2 F[x] and h−h0 = fq0 for some q0 2 F[x]. Then (g−g0)+(h−h0) = 0 0 0 0 0 0 f(q + q ). So (g + h) − (g + h ) = f(q + q ), so that g + h 2 [g + h]f . (2) We define [g]f + [h]f to be [g + h]f . Problem (1) ensure that no matter which element I use to stand 0 0 for the congruence classes, we get the same result. That is, if [g ]f = [g]f and [h ]f = [h]f , then 0 0 [g + h]f = [g + h ]f . (3) Assume g−g0 and h−h0 are divisible by f. We need to show gh−g0h0 is divisible by f. Equivalently, that gh+(g0h−g0h)−g0h0 is divisible by f. Write gh+(g0h−g0h)−g0h0 = (g −g0)h+(h−h0)g0, which is a sum of two things both divisible by f. So the sum, gh − g0h0; is divisible by f QED. (4) Similar to (2), we define [g]f ·[h]f to be [gh]f . Problem (3) ensure that no matter which element I use 0 0 to stand for the congruence classes, we get the same result. That is, if [g ]f = [g]f and [h ]f = [h]f , 0 0 then [gh]f = [g h ]f . (5) The additive identity is [0]f which is the set of all multiplies of f. The multiplicative identity is [1]f . (6) We need to check both operations are associative, commutative, have identiities, and every element has an additive inverse. Also that the distributive property holds. These all follow from the corre- sponding facts in F[x]. For example, [g] + [h] = [g + h] = [h + g] = [h] + [g]. 2 C. EXAMPLES. Consider an arbitrary monic degree two polynomial x + ax + b 2 Z2[x]. We will investigate the 2 quotient rings of the form Z2[x]=(x + ax + b). There are four cases to consider, depending on the values of a and b: 2 R1 = F[x]=(x ); 2 R2 = F[x]=(x + 1); 2 R3 = F[x]=(x + x); 2 R4 = F[x]=(x + x + 1). (1) Abusing notation slightly, the elements of each Ri can be denoted [0]; [1]; [x]; and [x + 1]. Why? In what sense is this an “abuse”? These notations have completely different meanings in each Ri. Explain. (2) Write down the addition table for R1. How do the addition tables for the other Ri look? (3) For each of the four rings Ri, write out the multiplication tables. (4) For each of the four rings Ri, identify all nilpotent elements. (5) For each of the four rings Ri, identify all idempotent elements. (6) For each of the four rings Ri, identify all zero divisors. (7) For each of the four rings Ri, identify all units. (8) One of these Ri is a field (with four elements!). Which one? (9) None of the three rings R2;R3; or R4 can be isomorphic to any other. Explain why, using your answers to (4)–(7). (10) Find an isomorphism φ : R1 ! R2. [Hint: Your answers to (4)–(7) are a clue.]. (11) Find an isomorphism : R3 ! Z2 × Z2. [Hint: Your answers to (4)–(7) are a clue.] There are two correct answers.] (12) Explain why the ring Z4 is not isomorphic to any of the rings Ri. [Hint: Consider 1 + 1.] 1Hint: you need to show fj(g0h0 − gh). Use the trick of “cleverly adding zero”: equivalently, you need to show fj(g0h0 + (gh0 − gh0) − gh). 3 2 (1) The notation drops the polynomial x + ax + b, but the set [g]x2+ax+b depends strongly on the 2 2 polynomial x + ax + b. For example [0]x2 and [0]x2+1 are two different set: one is multiples of x and the other is multiplies of x2 + 1. For example, x2 is in the former but not the latter. + [0] [1 ] [x] [x+1] [0] [0] [1 ] [x] [x+1] (2) The addition table of R1 is [1 ] [1 ] [0] [x+1] [x] . The addition tables for all [x] [x] [x+1] [0] [1] [x+1] [x+1] [x] [1] [0] four look ”the same”. ·R1 [0] [1 ] [x] [x+1] ·R3 [0] [1 ] [x] [x+1] [0] [0] [0 ] [0] [0] [0] [0] [0 ] [0] [0] (3) [1 ] [0 ] [1] [x] [x+1] [1 ] [0 ] [1] [x] [x+1] [x] [0] [x] [0] [x] [x] [0] [x] [x] [0] [x+1] [0] [x+1] [x] [1] [x+1] [0] [x+1] [0] [x+1] ·R2 [0] [1 ] [x] [x+1] ·R4 [0] [1 ] [x] [x+1] [0] [0] [0 ] [0] [0] [0] [0] [0 ] [0] [0] [1 ] [0 ] [1] [x] [x+1] [1 ] [0 ] [1] [x] [x+1] [x] [0] [x] [1] [x+1] [x] [0] [x] [x+1] [1] [x+1] [0] [x+1] [x+1] [0] [x+1] [0] [x+1] [1] [x] (4) The zero element [0] is (trivially) nilpotent in all.
Recommended publications
  • The Structure Theory of Complete Local Rings
    The structure theory of complete local rings Introduction In the study of commutative Noetherian rings, localization at a prime followed by com- pletion at the resulting maximal ideal is a way of life. Many problems, even some that seem \global," can be attacked by first reducing to the local case and then to the complete case. Complete local rings turn out to have extremely good behavior in many respects. A key ingredient in this type of reduction is that when R is local, Rb is local and faithfully flat over R. We shall study the structure of complete local rings. A complete local ring that contains a field always contains a field that maps onto its residue class field: thus, if (R; m; K) contains a field, it contains a field K0 such that the composite map K0 ⊆ R R=m = K is an isomorphism. Then R = K0 ⊕K0 m, and we may identify K with K0. Such a field K0 is called a coefficient field for R. The choice of a coefficient field K0 is not unique in general, although in positive prime characteristic p it is unique if K is perfect, which is a bit surprising. The existence of a coefficient field is a rather hard theorem. Once it is known, one can show that every complete local ring that contains a field is a homomorphic image of a formal power series ring over a field. It is also a module-finite extension of a formal power series ring over a field. This situation is analogous to what is true for finitely generated algebras over a field, where one can make the same statements using polynomial rings instead of formal power series rings.
    [Show full text]
  • Quotient-Rings.Pdf
    4-21-2018 Quotient Rings Let R be a ring, and let I be a (two-sided) ideal. Considering just the operation of addition, R is a group and I is a subgroup. In fact, since R is an abelian group under addition, I is a normal subgroup, and R the quotient group is defined. Addition of cosets is defined by adding coset representatives: I (a + I)+(b + I)=(a + b)+ I. The zero coset is 0+ I = I, and the additive inverse of a coset is given by −(a + I)=(−a)+ I. R However, R also comes with a multiplication, and it’s natural to ask whether you can turn into a I ring by multiplying coset representatives: (a + I) · (b + I)= ab + I. I need to check that that this operation is well-defined, and that the ring axioms are satisfied. In fact, everything works, and you’ll see in the proof that it depends on the fact that I is an ideal. Specifically, it depends on the fact that I is closed under multiplication by elements of R. R By the way, I’ll sometimes write “ ” and sometimes “R/I”; they mean the same thing. I Theorem. If I is a two-sided ideal in a ring R, then R/I has the structure of a ring under coset addition and multiplication. Proof. Suppose that I is a two-sided ideal in R. Let r, s ∈ I. Coset addition is well-defined, because R is an abelian group and I a normal subgroup under addition. I proved that coset addition was well-defined when I constructed quotient groups.
    [Show full text]
  • Subrings, Ideals and Quotient Rings the First Definition Should Not Be
    Section 17: Subrings, Ideals and Quotient Rings The first definition should not be unexpected: Def: A nonempty subset S of a ring R is a subring of R if S is closed under addition, negatives (so it's an additive subgroup) and multiplication; in other words, S inherits operations from R that make it a ring in its own right. Naturally, Z is a subring of Q, which is a subring of R, which is a subring of C. Also, R is a subring of R[x], which is a subring of R[x; y], etc. The additive subgroups nZ of Z are subrings of Z | the product of two multiples of n is another multiple of n. For the same reason, the subgroups hdi in the various Zn's are subrings. Most of these latter subrings do not have unities. But we know that, in the ring Z24, 9 is an idempotent, as is 16 = 1 − 9. In the subrings h9i and h16i of Z24, 9 and 16 respectively are unities. The subgroup h1=2i of Q is not a subring of Q because it is not closed under multiplication: (1=2)2 = 1=4 is not an integer multiple of 1=2. Of course the immediate next question is which subrings can be used to form factor rings, as normal subgroups allowed us to form factor groups. Because a ring is commutative as an additive group, normality is not a problem; so we are really asking when does multiplication of additive cosets S + a, done by multiplying their representatives, (S + a)(S + b) = S + (ab), make sense? Again, it's a question of whether this operation is well-defined: If S + a = S + c and S + b = S + d, what must be true about S so that we can be sure S + (ab) = S + (cd)? Using the definition of cosets: If a − c; b − d 2 S, what must be true about S to assure that ab − cd 2 S? We need to have the following element always end up in S: ab − cd = ab − ad + ad − cd = a(b − d) + (a − c)d : Because b − d and a − c can be any elements of S (and either one may be 0), and a; d can be any elements of R, the property required to assure that this element is in S, and hence that this multiplication of cosets is well-defined, is that, for all s in S and r in R, sr and rs are also in S.
    [Show full text]
  • An Introduction to the P-Adic Numbers Charles I
    Union College Union | Digital Works Honors Theses Student Work 6-2011 An Introduction to the p-adic Numbers Charles I. Harrington Union College - Schenectady, NY Follow this and additional works at: https://digitalworks.union.edu/theses Part of the Logic and Foundations of Mathematics Commons Recommended Citation Harrington, Charles I., "An Introduction to the p-adic Numbers" (2011). Honors Theses. 992. https://digitalworks.union.edu/theses/992 This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors Theses by an authorized administrator of Union | Digital Works. For more information, please contact [email protected]. AN INTRODUCTION TO THE p-adic NUMBERS By Charles Irving Harrington ********* Submitted in partial fulllment of the requirements for Honors in the Department of Mathematics UNION COLLEGE June, 2011 i Abstract HARRINGTON, CHARLES An Introduction to the p-adic Numbers. Department of Mathematics, June 2011. ADVISOR: DR. KARL ZIMMERMANN One way to construct the real numbers involves creating equivalence classes of Cauchy sequences of rational numbers with respect to the usual absolute value. But, with a dierent absolute value we construct a completely dierent set of numbers called the p-adic numbers, and denoted Qp. First, we take p an intuitive approach to discussing Qp by building the p-adic version of 7. Then, we take a more rigorous approach and introduce this unusual p-adic absolute value, j jp, on the rationals to the lay the foundations for rigor in Qp. Before starting the construction of Qp, we arrive at the surprising result that all triangles are isosceles under j jp.
    [Show full text]
  • Twenty-Seven Element Albertian Semifields Thomas Joel Hughes University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2016-01-01 Twenty-Seven Element Albertian Semifields Thomas Joel Hughes University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Mathematics Commons Recommended Citation Hughes, Thomas Joel, "Twenty-Seven Element Albertian Semifields" (2016). Open Access Theses & Dissertations. 667. https://digitalcommons.utep.edu/open_etd/667 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. Twenty-Seven Element Albertian Semifields THOMAS HUGHES Master's Program in Mathematical Sciences APPROVED: Piotr Wojciechowski, Ph.D., Chair Emil Schwab, Ph.D. Vladik Kreinovich, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Twenty-Seven Element Albertian Semifields by THOMAS HUGHES THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Master's Program in Mathematical Sciences THE UNIVERSITY OF TEXAS AT EL PASO December 2016 Acknowledgements First and foremost, I'd like to acknowledge and thank my advisor Dr. Piotr Wojciechowski, who inspired me to pursue serious studies in mathematics and encouraged me to take on this topic. I'd like also to acknowledge and thank Matthew Wojciechowski, from the Department of Computer Science at Ohio State University, whose help and collaboration on developing a program and interface, which found semifields and their respective 2-periodic bases, made it possible to obtain some of the crucial results in this thesis.
    [Show full text]
  • Complete Set of Algebra Exams
    TIER ONE ALGEBRA EXAM 4 18 (1) Consider the matrix A = . −3 11 ✓− ◆ 1 (a) Find an invertible matrix P such that P − AP is a diagonal matrix. (b) Using the previous part of this problem, find a formula for An where An is the result of multiplying A by itself n times. (c) Consider the sequences of numbers a = 1, b = 0, a = 4a + 18b , b = 3a + 11b . 0 0 n+1 − n n n+1 − n n Use the previous parts of this problem to compute closed formulae for the numbers an and bn. (2) Let P2 be the vector space of polynomials with real coefficients and having degree less than or equal to 2. Define D : P2 P2 by D(f) = f 0, that is, D is the linear transformation given by takin!g the derivative of the poly- nomial f. (You needn’t verify that D is a linear transformation.) (3) Give an example of each of the following. (No justification required.) (a) A group G, a normal subgroup H of G, and a normal subgroup K of H such that K is not normal in G. (b) A non-trivial perfect group. (Recall that a group is perfect if it has no non-trivial abelian quotient groups.) (c) A field which is a three dimensional vector space over the field of rational numbers, Q. (d) A group with the property that the subset of elements of finite order is not a subgroup. (e) A prime ideal of Z Z which is not maximal. ⇥ (4) Show that any field with four elements is isomorphic to F2[t] .
    [Show full text]
  • Some Aspects of Semirings
    Appendix A Some Aspects of Semirings Semirings considered as a common generalization of associative rings and dis- tributive lattices provide important tools in different branches of computer science. Hence structural results on semirings are interesting and are a basic concept. Semi- rings appear in different mathematical areas, such as ideals of a ring, as positive cones of partially ordered rings and fields, vector bundles, in the context of topolog- ical considerations and in the foundation of arithmetic etc. In this appendix some algebraic concepts are introduced in order to generalize the corresponding concepts of semirings N of non-negative integers and their algebraic theory is discussed. A.1 Introductory Concepts H.S. Vandiver gave the first formal definition of a semiring and developed the the- ory of a special class of semirings in 1934. A semiring S is defined as an algebra (S, +, ·) such that (S, +) and (S, ·) are semigroups connected by a(b+c) = ab+ac and (b+c)a = ba+ca for all a,b,c ∈ S.ThesetN of all non-negative integers with usual addition and multiplication of integers is an example of a semiring, called the semiring of non-negative integers. A semiring S may have an additive zero ◦ defined by ◦+a = a +◦=a for all a ∈ S or a multiplicative zero 0 defined by 0a = a0 = 0 for all a ∈ S. S may contain both ◦ and 0 but they may not coincide. Consider the semiring (N, +, ·), where N is the set of all non-negative integers; a + b ={lcm of a and b, when a = 0,b= 0}; = 0, otherwise; and a · b = usual product of a and b.
    [Show full text]
  • 1.1 Rings and Ideals
    1.1 Rings and Ideals A ring A is a set with + , such that • (1) (A, +) is an abelian group; (2) (A, ) is a semigroup; • (3) distributes over + on both sides. • 22 In this course all rings A are commutative, that is, (4) ( x,y A) x y = y x ∀ ∈ • • and have an identity element 1 (easily seen to be unique) (5) ( 1 A)( x A) 1 x = x 1 = x . ∃ ∈ ∀ ∈ • • 23 If 1=0 then A = 0 (easy to see), { } called the zero ring. Multiplication will be denoted by juxtaposition, and simple facts used without comment, such as ( x,y A) ∀ ∈ x 0 = 0 , ( x)y = x( y) = (xy) , − − − ( x)( y) = xy . − − 24 Call a subset S of a ring A a subring if (i) 1 S ; ∈ (ii) ( x,y S) x+y, xy, x S . ∀ ∈ − ∈ Condition (ii) is easily seen to be equivalent to (ii)′ ( x,y S) x y, xy S . ∀ ∈ − ∈ 25 Note: In other contexts authors replace the condition 1 S by S = (which is ∈ 6 ∅ not equivalent!). Examples: (1) Z is the only subring of Z . (2) Z is a subring of Q , which is a subring of R , which is a subring of C . 26 (3) Z[i] = a + bi a, b Z (i = √ 1) , { | ∈ } − the ring of Gaussian integers is a subring of C . (4) Z = 0, 1,...,n 1 n { − } with addition and multiplication mod n . (Alternatively Zn may be defined to be the quotient ring Z/nZ , defined below). 27 (5) R any ring, x an indeterminate. Put R[[x]] = a +a x+a x2 +..
    [Show full text]
  • CHAPTER 2 RING FUNDAMENTALS 2.1 Basic Definitions and Properties
    page 1 of Chapter 2 CHAPTER 2 RING FUNDAMENTALS 2.1 Basic Definitions and Properties 2.1.1 Definitions and Comments A ring R is an abelian group with a multiplication operation (a, b) → ab that is associative and satisfies the distributive laws: a(b+c)=ab+ac and (a + b)c = ab + ac for all a, b, c ∈ R. We will always assume that R has at least two elements,including a multiplicative identity 1 R satisfying a1R =1Ra = a for all a in R. The multiplicative identity is often written simply as 1,and the additive identity as 0. If a, b,and c are arbitrary elements of R,the following properties are derived quickly from the definition of a ring; we sketch the technique in each case. (1) a0=0a =0 [a0+a0=a(0+0)=a0; 0a +0a =(0+0)a =0a] (2) (−a)b = a(−b)=−(ab)[0=0b =(a+(−a))b = ab+(−a)b,so ( −a)b = −(ab); similarly, 0=a0=a(b +(−b)) = ab + a(−b), so a(−b)=−(ab)] (3) (−1)(−1) = 1 [take a =1,b= −1 in (2)] (4) (−a)(−b)=ab [replace b by −b in (2)] (5) a(b − c)=ab − ac [a(b +(−c)) = ab + a(−c)=ab +(−(ac)) = ab − ac] (6) (a − b)c = ac − bc [(a +(−b))c = ac +(−b)c)=ac − (bc)=ac − bc] (7) 1 = 0 [If 1 = 0 then for all a we have a = a1=a0 = 0,so R = {0},contradicting the assumption that R has at least two elements] (8) The multiplicative identity is unique [If 1 is another multiplicative identity then 1=11 =1] 2.1.2 Definitions and Comments If a and b are nonzero but ab = 0,we say that a and b are zero divisors;ifa ∈ R and for some b ∈ R we have ab = ba = 1,we say that a is a unit or that a is invertible.
    [Show full text]
  • Lecture 7.2: Ideals, Quotient Rings, and Finite Fields
    Lecture 7.2: Ideals, quotient rings, and finite fields Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 7.2: Ideals, quotient rings, and finite fields Math 4120, Modern algebra 1 / 7 Ideals In the theory of groups, we can quotient out by a subgroup if and only if it is a normal subgroup. The analogue of this for rings are (two-sided) ideals. Definition A subring I ⊆ R is a left ideal if rx 2 I for all r 2 R and x 2 I : Right ideals, and two-sided ideals are defined similarly. If R is commutative, then all left (or right) ideals are two-sided. We use the term ideal and two-sided ideal synonymously, and write I E R. Examples nZ E Z. a 0 If R = M ( ), then I = : a; c 2 is a left, but not a right ideal of R. 2 R c 0 R The set Symn(R) of symmetric n × n matrices is a subring of Mn(R), but not an ideal. M. Macauley (Clemson) Lecture 7.2: Ideals, quotient rings, and finite fields Math 4120, Modern algebra 2 / 7 Ideals Remark If an ideal I of R contains 1, then I = R. Proof Suppose 1 2 I , and take an arbitrary r 2 R. Then r1 2 I , and so r1 = r 2 I . Therefore, I = R. It is not hard to modify the above result to show that if I contains any unit, then I = R.
    [Show full text]
  • Arxiv:1402.0956V2 [Math.RA] 11 Feb 2014 O Some for Elkon Ned Uha Ler Sete Iiinrn Risomorp Or Ring Division a Either Is Ring Algebra Matrix an Such Indeed, Well-Known
    ON THE STRUCTURE OF QUATERNION RINGS OVER Z/nZ JOSE´ MAR´IA GRAU, CELINO MIGUEL, AND ANTONIO M. OLLER-MARCEN´ a,b Abstract. In this paper we define Z/nZ , the quaternion rings over Z/nZ, and investigate their structure. It is proved that these rings are isomorphic to −1 −1 1 1 , ≡ ≡− , Z/nZ if a b 1 (mod 4) or to Z/nZ otherwise. We also prove that a,b 2 the ring Z/nZ is isomorphic to M (Z/nZ) if and only if n is odd and that all quaternion algebras defined over Z/nZ are isomorphic if and only if n 6≡ 0 (mod 4). AMS 2010 Mathematics Subject Classification 11R52,16-99 Keywords: Quaternion algebra, Z/nZ, Structure 1. Introduction The origin of quaternions dates back to 1843, when Hamilton considered a 4−dimensional vector space over R with basis {1, i, j, k} and defined an associa- tive product given by the now classical rules i2 = j2 = −1 and ij = −ji = k. These “Hamilton quaternions” turned out to be the only division algebra over R with dimension greater than 2. This idea was later extended to define quaternion algebras over arbitrary fields. Thus, a quaternion algebra over an arbitrary field F is just a 4−dimensional central simple algebra over F . This definition leads to different presentations according to the characteristic of the field F . If F is a field of characteristic not 2 a quaternion algebra over F is a 4−dimensional algebra over F with a basis {1, i, j, k} such that i2 = a, j2 = b and ij = −ji = k for some a,b ∈ F \{0}.
    [Show full text]
  • Ring Theory (Math 113), Summer 2014
    Ring Theory (Math 113), Summer 2014 James McIvor University of California, Berkeley August 3, 2014 Abstract These are some informal notes on rings and fields, used to teach Math 113 at UC Berkeley, Summer 2014. We go through the basic stuff: rings, homomorphisms, isomorphisms, ideals and quotient rings, division and (ir)reducibility, all heavy on the examples, mostly polynomial rings and their quotients. Some allusions to basic ideas from algebraic geometry are made along the way. Then we get into fields, culminating in a brief exposure to the basic ideas of galois theory. Contents 1 Basic Examples and Definitions 3 1.1 Preliminary Examples . .3 1.2 Definition of a Ring . .4 1.3 Special elements in a ring . .5 2 Subrings; Homomorphisms 7 2.1 Subrings; Adjoining Elements . .7 2.2 Products of Rings . .7 2.3 Homomorphisms . .8 2.4 Isomorphisms . 10 3 Kernels and Ideals 12 3.1 The kernel of a homomorphism . 12 3.2 Ideals . 12 3.3 Operations on Ideals . 14 4 Quotient Rings 15 4.1 Review: Cosets . 15 4.2 Quotient Rings . 15 4.3 The easy way to think about quotients of a polynomial ring . 16 4.4 The Isomorphism Theorem . 17 5 Factorization; Reducibility; Roots 19 5.1 Division and Factorization in Z ............................... 19 5.2 Division and Factorization of Polynomials . 19 6 Special Classes of Rings 23 6.1 Fields . 23 6.2 Integral Domains (\Domains") . 23 6.3 Principal Ideal Domains . 23 6.4 Euclidean Domains . 23 6.5 Unique Factorization Domains . 24 6.6 Relationships Between the Types of Rings .
    [Show full text]