Satellite Technology Primer Summary Broadband
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TITAN 2000 - Cat 12/15 4G LTE CPE Advanced Modem
TITAN 2000 - Cat 12/15 4G LTE CPE Advanced Modem Global Telecom’s TITAN 2000 is the latest advancement in modems for the Internet of Things. With 8x8 MIMO at its core, the TITAN 2000 provides lightning fast speed and always reliable connections for enterprise and consumers alike. The TITAN 2000 is capable of maximum download speeds of 600 MBPS and is built using a Cat 15 module (model: Global-7243A) with eight antenna ports. It delivers 11 dB, which is 13 times stronger than typical 2x2 MIMO modems or end user devices. This high capacity and strong received power comes from specialized design with high MIMO and high gain antenna configuration. It’s an ideal solution for homes and businesses looking to truly cut the cord once and for all. Innovation and rapid changes in our connected devices make it hard to plan for § PoE capable for simple the future, but the TITAN 2000’s designers have taken migration needs into and reliable interface account. Using cellular high-speed protocols, including advanced LTE and 5G, § Advanced 4G the TITAN 2000 has been created to be future-proof and capable of hosting Cat capabilities with 8R2T 19 and 5G modules with pin-to-pin compatibility -- eliminating the need to design (Release 13 change software or other parts. Global Telecom’s flagship product for 2020 compliant) also supports up to four channels of carrier aggregation utilizing inter- and intra- band. The TITAN 2000 is compatible with all U.S. carriers and in more than 165 § Multi-band and multi- countries worldwide. -
Mdm3310 Satellite Modem
MDM3310 SATELLITE MODEM The MDM3310 offers cost- effective satellite connectivity for a wide variety of professional applications on the Newtec Dialog platform. Key Features Main Advantages • High concurrent rates up to • High throughput upstream and downstream capabilities 100/25 Mbps • 500 Mbaud DVB-S2X forward • Embedded TCP acceleration • MF-TDMA, Mx-DMA and SCPC return link and encryption (not export controlled) • VL-SNR support for extended availability and PSD restricted applications • Multilevel QoS with seven • OpenAMIP and GXT file support for mobility QoS Classes • Low jitter for real time • The most optimal modulation and bandwidth allocation while guaranteeing the highest efficiency and availability applications • DNS Cache/Relay • Easy to use multilingual web GUI for installation, diagnostics and • Versatile IP routing and troubleshooting addressing MDM3310 on the Newtec Dialog® Platform • Support of IPv4 and IPv6 The Newtec MDM3310 Satellite Modem is a two-way, high throughput • Multiple virtual networks VSAT modem supporting a wide range of IP Services including Internet/ behind the modem Intranet access, VoIP, enterprise connectivity, backbones for backhauling, • DVB-S2X forward contribution and multicasting services. Its ease of installation and high • MF-TDMA 4CPM with Adaptive performance modulation techniques enable network operators to offer Return Link various bandwidth intensive services in a cost-effective way. • Mx-DMA HRC return with Return Link Technology Flexibility for Tailored Services AUPC and ACM For the return channel, a choice can be made between three different • DVB-S2X return with ACM return technologies depending on the type of application. The modem Markets supports DVB-S2X SCPC in the return, which allows for highly efficient, • Enterprise/SME medium to very high rate dedicated return bandwidth, for applications • Trunking such as high speed IP backbones, cellular backhauling, trunking, • Cellular backhaul maritime, mobility and file/video contribution. -
DMD50 Universal Satellite Modem Breaks New Ground in Flexibility, Operation and Cost
DMD50 Modems Universal Satellite Modem Overview Typical Users The DMD50 Universal Satellite Modem breaks new ground in flexibility, operation and cost. With Telecom Service standards including IESS-308, IESS-309, IESS-310, IESS–315 & DVB-S, and covering data rates up to 52 • Providers Mbps, this 1RU duplex modem covers many satellite IP, telecom, video and Internet applications. The DMD50 provides highly advanced and bandwidth-efficient forward error correction (FEC). Advanced • Internet Service FEC options include Turbo Product Code (TPC) and Low Density Parity Check (LDPC). Legacy support Providers for Viterbi, Trellis, Concatenated Viterbi Reed-Solomon, and Sequential FEC are also included. A complete range of modulation types is supported, including BPSK, QPSK, OQPSK, 8PSK, 8-QAM, and • Government & Military 16-QAM. Common Applications Advanced FEC and modulation capabilities are integrated with the revolutionary DoubleTalk Carrier-in- • G.703 Trunking Carrier bandwidth compression allowing for maximum state-of-the-art performance under all conditions. This combination of advanced technologies enables multi-dimensional optimization, allowing satellite • IP Trunking communications users to: • Terminal • Minimize required satellite bandwidth Communications • Maximize throughput without using additional transponder resources • Maximize availability (margin) without using additional transponder resources • Enable use of a smaller BUC/HPA and/or antenna • Or, a combination of the above to meet specific mission needs Data rates range from 2.4 kbps to 52 Mbps and symbol rates range from 4.8 ksps to 30 Msps. The modem provides a standard EIA-530 / RS-422 serial interface. It can optionally be configured with EIA-613 (HSSI), G.703 (T1/E1/T2/E2 & T3/E3), DVB ASI/SPI and 10/100/1000Base-T Ethernet interfaces. -
Hughesnet HT2000W Satellite Modem – User Guide
HT2000W Satellite Modem User Guide 1041264-0001 Revision A February 15, 2017 11717 Exploration Lane, Germantown, MD 20876 Phone (301) 428-5500 Fax (301) 428-1868/2830 Copyright © 2017 Hughes Network Systems, LLC All rights reserved. This publication and its contents are proprietary to Hughes Network Systems, LLC. No part of this publication may be reproduced in any form or by any means without the written permission of Hughes Network Systems, LLC, 11717 Exploration Lane, Germantown, Maryland 20876. Hughes Network Systems, LLC has made every effort to ensure the correctness and completeness of the material in this document. Hughes Network Systems, LLC shall not be liable for errors contained herein. The information in this document is subject to change without notice. Hughes Network Systems, LLC makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Trademarks HUGHES and Hughes Network Systems are trademarks of Hughes Network Systems, LLC. All other trademarks are the property of their respective owners. Contents Contents ................................................................................................. 3 Understanding safety alert messages .................................................... 5 Messages concerning personal injury .................................................................... 5 Messages concerning property damage ................................................................ 5 Safety -
Resolving Interference Issues at Satellite Ground Stations
Application Note Resolving Interference Issues at Satellite Ground Stations Introduction RF interference represents the single largest impact to robust satellite operation performance. Interference issues result in significant costs for the satellite operator due to loss of income when the signal is interrupted. Additional costs are also encountered to debug and fix communications problems. These issues also exert a price in terms of reputation for the satellite operator. According to an earlier survey by the Satellite Interference Reduction Group (SIRG), 93% of satellite operator respondents suffer from satellite interference at least once a year. More than half experience interference at least once per month, while 17% see interference continuously in their day-to-day operations. Over 500 satellite operators responded to this survey. Satellite Communications Overview Satellite earth stations form the ground segment of satellite communications. They contain one or more satellite antennas tuned to various frequency bands. Satellites are used for telephony, data, backhaul, broadcast, community antenna television (CATV), internet, and other services. Depending on the application, each satellite system may be receive only or constructed for both transmit and receive operations. A typical earth station is shown in figure 1. Figure 1. Satellite Earth Station Each satellite antenna system is composed of the antenna itself (parabola dish) along with various RF components for signal processing. The RF components comprise the satellite feed system. The feed system receives/transmits the signal from the dish to a horn antenna located on the feed network. The location of the receiver feed system can be seen in figure 2. The satellite signal is reflected from the parabolic surface and concentrated at the focus position. -
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services. -
Mdm6100 Broadcast Satellite Modem (R2.11)
MDM6100 BROADCAST SATELLITE MODEM (R2.11) Maximum symbol rates up to Description 72 Mbaud and modulations up Newtec’s next generation broadcast The Newtec MDM6100 Broadcast Satellite Modem is the next to 256APSK (DVB-S2X standard) generation DVB compliant modem specifically designed for broadcast combined with VCM (Variable satellite modem is not applications. The modem supports the DVB-S2 and DVB-S2X, next to Coding and Modulation) allow just a modem. It’s a for maximum throughput in large the legacy DVB-S and DVB-DSNG standards, as well as Newtec S2 platform that takes Extensions in order to achieve barrier-breaking efficiency. The unit can contribution links. act as a single Transport Stream modulator, demodulator or modem. a vital role in your The powerful MPE encapsulator/ networks, performs the As a modulator, it is best suited for broadcast direct-to-home, primary decapsulator gives access to dual best on the market and stream communication where distribution to headends and contribution of television and radio helps you evolve content. As a modem or demodulator, it is typically installed in head- live video is combined with file ends or at both sides of a contribution link. The MDM6100 can be used transfer, a service channel or your business through in conjunction with set-top boxes, professional IRDs or professional video streaming. ongoing market and satellite demodulators. At the output of the broadcast technology innovations. satellite modem, the signal is Delivering the Highest Uptime for Vital Links available in IF or extended L-band (950 MHz - 2150 MHz), providing a compact and cost effective solution. -
Modem? Router? Gateway? Making Sense of Your Home Networking Equipment
FACT SHEET Modem? Router? Gateway? Making sense of your home networking equipment Most of the time, you don’t need to know anything about how the water gets into your home—you just turn on the tap. And you don’t need to be an electrician to use your refrigerator; you just plug it in and you’re all set. With your home Internet service, it should be the same way. You shouldn’t need to know much about the technology to use it. But the reality is that it’s helpful to have a basic understanding of networking technology and the different pieces of equipment in your home that allow you to connect to the Internet. Why are there so many different names for these devices? One challenge relates to the names that technology experts use to refer to these devices, whether it’s your Internet service provider (ISP) or the sales person at the big box store. You’ve probably heard these devices called several different things, such as a modem, gateway, router, or maybe even an access point. What’s the difference between all of these devices? It can definitely be complicated. The first thing that’s important to understand is that these devices collectively perform two different functions: nnthey make it possible for your ISP to bring an Internet connection into your home; and nnthey make it possible for that connection to be converted to a Wi-Fi signal so you can get online wirelessly from any of your devices. One-device solution: residential gateway Sometimes both of these functions are combined in a single device, which is usually called a residential gateway. -
Lora-Based Device-To-Device Smartphone Communication for Crisis Scenarios
Jonas Höchst et al. LoRa-based Device-to-Device Smartphone Communication for Crisis Scenarios LoRa-based Device-to-Device Smartphone Communication for Crisis Scenarios Jonas Höchst Lars Baumgärtner University of Marburg, Germany Technical University of Darmstadt, Germany Technical University of Darmstadt, Germany [email protected] [email protected] Franz Kuntke Alvar Penning Technical University of Darmstadt, Germany University of Marburg, Germany [email protected] [email protected] Artur Sterz Bernd Freisleben University of Marburg, Germany University of Marburg, Germany Technical University of Darmstadt, Germany Technical University of Darmstadt, Germany [email protected] [email protected] ABSTRACT In this paper, we present an approach to facilitate long-range device-to-device communication via smartphones in crisis scenarios. Through a custom firmware for low-cost LoRa capable micro-controller boards, called rf95modem, common devices for end users can be enabled to use LoRa through a Bluetooth, Wi-Fi, or serial connection. We present two applications utilizing the flexibility provided by the proposed firmware. First, we introduce a novel device-to-device LoRa chat application that works a) on the two major mobile platforms Android and iOS and b) on traditional computers like notebooks using a console-based interface. Second, we demonstrate how other infrastructure-less technology can benefit from our approach by integrating it into the DTN7 delay-tolerant networking software. The firmware, the device-to-device chat application, the integration into DTN7, as well as the experimental evaluation code fragments are available under permissive open-source licenses. Keywords LoRa, Disaster Communication, Device-To-Device Communication, INTRODUCTION The communication technologies developed and deployed in the last decades are integral parts of our daily life and are used by mobile phones, computers, or smart applications in homes and cities. -
High-Speed Internet Connection Guide Welcome
High-Speed Internet Connection Guide Welcome Welcome to Suddenlink High-Speed Internet Thank you for choosing Suddenlink as your source for quality home entertainment and communications! There is so much to enjoy with Suddenlink High-Speed Internet including: + Easy self-installation + WiFi@Home availability + Easy access to your Email + Free access to Watch ESPN This user guide will help you get up and running in an instant. If you have any other questions about your service please visit help.suddenlink.com or contact our 24/7 technical support. Don’t forget to register online for a Suddenlink account at suddenlink.net for great features and access to email, billing statements, Suddenlink2GO® and more! 1 Table of Contents Connecting Your High Speed Internet Connecting Your High-Speed Internet Your Suddenlink Self-Install Kit includes Suddenlink Self-Install Kit ..................................................................................... 3 Connecting your computer to a Suddenlink modem ....................................... 4 the following items: Connecting a wireless router or traditional router to Suddenlink ................. 5 Getting Started Microsoft Windows XP or Higher ......................................................................... 6 Cable Modem Power Adapter Mac OS X ................................................................................................................. 6 Register Your Account Online ................................................................................7 Suddenlink WiFi@Home -
Tooway Ka Band Satelltie Temrial Installaiton Manual
Tooway™ Ka-band Satellite Terminal Handbook Eutelsat Multimedia Department – System Integration Team Version 4.6 oct. 2009 www.tooway.net 1-1 1 SYSTEM AND SERVICE OVERVIEW ...........................................................................................................4 2 BASIC TECHNICAL DATA ..............................................................................................................................5 2.1 TERMINAL DATA................................................................................................................................................5 2.1.1 DOWNSTREAM:.................................................................................................................................................5 2.1.2 UPSTREAM........................................................................................................................................................5 2.1.3 FADE MITIGATION............................................................................................................................................5 2.1.4 SM....................................................................................................................................................................5 2.1.5 SMTS ...............................................................................................................................................................5 2.2 ADVANTAGE VERSUS OTHER EXISTING SYSTEMS ............................................................................................6 -
Setting up Spectrum Internet and Wifi
Setting Up Spectrum Internet and WiFi 1 Connect the modem 3 Connect a wireless a Connect one end of the coax cable to the cable wall device to the WiFi router outlet and the other end to the modem. a Open the WiFi connections on your device. b Plug the power cord into the modem, then plug the other end into an electrical outlet. b Select your unique network name (SSID), which you can c After you plug in the modem, wait for it to connect find on the bottom of the router and on the enclosed to the network (about 2 to 5 minutes) before stickers. If you see the name ending in “5G,” the router proceeding to the next step. is 5 GHz-capable. Connecting to the “5G” network may provide a better experience. If a Spectrum receiver is connected to the cable c Enter the password printed on the WiFi router. This password wall outlet see, the instructions below. is also printed on the stickers included with the router. Not all cables will be used during installation. d Follow steps A-C to connect other devices. 2 Connect the modem and the 4 Activate the modem WiFi router a Choose from two ways to start your service: a Connect one end of the Ethernet cable to the modem and the other end to the yellow internet port on the WiFi router. Use your smartphone to go to activate.spectrum.net. b Plug the power cord into the WiFi router, and then On your computer, browse to activate.spectrum.net.