Gev/C2) 2 H Mh(Gev/C )
Total Page:16
File Type:pdf, Size:1020Kb
OverviewOverview ofof thethe IFCAIFCA ActivitiesActivities DelphiDelphi (LEP)(LEP) CDFCDF ((Tevatron)Tevatron) CMSCMS (LHC)(LHC) GRIDGRID A. Ruiz-Jimeno Instituto de Física de Cantabria (CSIC - Univ. de Cantabria) RECFA-meeting HEP Physics group IFCA (and Oviedo University) Permanent Contracts, PostDoc Students CARLOS FERNANDEZ ENRIQUE CALVO ALICIA CALDERON Technician CSIC Engineer Contract FPI Fellow JESUS MARCO JAVIER FERNANDEZ DANIEL CANO Researcher CSIC P.D. Contract CELSO MARTINEZ GERVASIO GOMEZ AMPARO LOPEZ Tenure CSIC P.D. Contract FPI Fellow FRANCISCO MATORRAS ISIDRO GONZALEZ RAFAEL MARCO Lecturer Univ. Cantabria P.D. Contract Contract TERESA RODRIGO JOSE MARIA LOPEZ JONATAN PIEDRA Full Professor U. Cantabria. Assoc. Contract U.O. FPU Fellow ALBERTO RUIZ IVAN VILA DAVID RODRIGUEZ Full Professor U.Cantabria P.D. Contract Contract ROCIO VILAR JAVIER CUEVAS P.D. Fellow Lecturer U. Oviedo Personnel / Task & Responsabilities N am e Task/R esponsability % of involvem ent E. Calvo (Engineer) CMS: Engineering & Integration 100% Installation & Commissioning J. Cuevas (Physicist) CMS: Simul/Reconst. Software 50% U n iv . o f O v ie d o CDF: Software & Data Analysis (Higgs) C. F. Figueroa (Physicist) CMS: Laboratory Infraestructure 50% Safety & Control G. Gom ez (Physicist) CDF: TOF Operation & Maintenance 100% Data Analysis (Top Physics) J. M arco (P hysicist) CMS: Software development & DataBases 50% CDF: Software & Data Analysis (Higgs) C . M a rtin e z (P h y s ic is t) CMS: Simul/Reconst. Software 50% F . M a to rra s (P h ysicist) CMS: Simul/Reconst. Software 50% Alignment Instrumentation T. Rodrigo (Physicist) CMS: Alignment Instrumentation 100% CDF: Data Analysis (Top Physics) A . R u iz (P h y s ic is t) CDF: Data Analysis (B Physics) 100% Group Leader I. V ila (P h y s ic is t) CMS: DAQ & Laser System 100% CDF: TOF Maintenance & Analiysis (B Phys.) R . V ila r (P h y s ic is t) CDF: TOF Operation & Maintenance 100% Data Analysis (Top Physics) Students (Today: 1 in CDF & 2 in CMS) DELPDELPHIHI Activities.Activities. HiggsHiggs searchsearch J.Cuevas,J.Cuevas, J.J. Fernandez,Fernandez, J.J. Marco,Marco, R.R. Marco,Marco, C.MartinezC.Martinez s 1 Search for Higgs bosons at LEP CL -1 10 DELPHI with the DELPHI detector -2 10 -3 10 Observed Expected for -4 background 10 -5 10 113.3 114.1 -6 10 100 102 104 106 108 110 112 114 116 118 120 2 mH(GeV/c ) DELPHI: No evidence for any SM Higgs 2 signal, limit set to mH> 114.1 GeV/c β DELPHI √s from 130 to 209 GeV tan 2 mtop = 174.3 GeV/c M = 1 TeV/c2 susy µ 2 M2 = - = 200 GeV/c max 10 mh scenario observed limit expected limit experimentally excluded theoretically 1 forbidden theoretically forbidden A candidate in the 4 jet channel: 20 40 60 80 100 120 140 2 analsysis based on: b-tagging, mh (GeV/c ) pairing and mass reconstruction DELPHI MSSM Higgs bosons: excluded regions at 95% CL by the searches in the hZ and hA channels SignalSignal compatibilitycompatibility 50 y -2 ln Q negative 40 LEP (s+b slightly -2 ln(Q) 30 preferred) from 20 115 onwards 10 0 y Broad minimum distribution for -10 Observed values above Expected for background -20 Expected for signal + background the kinematical -30 limit 106 108 110 112 114 116 118 120 2 mH(GeV/c ) ExclusionExclusion limits:limits: • Confidence levels CLb(mh) & CLs(mh) as function of mh mh>114.4 (obs.) mh>115.3 (exp.) b 1 s 1 -1 LEP Not 1-CL 10 CL -1 LEP compatible 10 2σ -2 -2 with a SM 10 10 Higgs of 98 -33σ 2 -3 10 Observed GeV/c . 10 Expected for Observed background Expected for signal+background -4 Not 10 -4 Expected for background completely 10 -54σ understood 10 114.4 115.3 -5 -6 10 10 80 85 90 95 100 105 110 115 120100 102 104 106 108 110 112 114 116 118 120 m (GeV/c2) 2 H mH(GeV/c ) Figure 11: Confidence level CLs for the signal plus background hypothesis. Solid line: observation; 2 dashed line: median background expectation. The dark and light shaded bands around the median From 12 to 80 GeV/c , a cross-section 20 timesexpectedlessline c ortrhespanond to thethe 68% SMand 95% oneprobab ilitisy b anexcludedds (see Appendix). The intersection of the horizontal line for CLs =0.05 with the observed curve defines the 95% confidence level lower bound for the mass of the Standard Model Higgs boson. 23 FermiophobicFermiophobic HiggsHiggs y In 2HDM (type I) model, H decays dominantly into γγ and other bosons. y All 4 experiments searched for the γγ final state y A 115 GeV/c2 fermiophobic Higgs has a BR(H→γγ) < 0.04 y Obs. Limit 109.7 GeV y Exp. Limit 109.4 GeV NoNo mixingmixing scenarioscenario LEP 88-209 GeV Preliminary LEP 88-209 GeV Preliminary β ) 160 No Mixing 2 tan 140 No Mixing 10 (GeV/c 120 This region ° Theoretically A Inaccessible will be m 100 partially M =1 TeV SUSY 80 M2=200 GeV excluded with µ=-200 GeV m =800 GeV 60 the new gluino A->cc pred. No stop mixing: X =0 t β combination Excluded 40 tan β = 0.44 1 by LEP Excluded 20 by LEP 0 0 100 200 300 400 500 0 20 40 60 80 100 120 140 2 2 m (GeV/c ) mh° (GeV/c ) A° LEP 2001 combination!! 2 y In this scenario, maximum mh is ~ 115 GeV/c y The region mh~mA is beyond the hA kinematical reach maxmax mmhh scenarioscenario LEP 88-209 GeV Preliminary y LEP 2001 combination ) 160 2 y Without radiative 140 m °-max h corrections, MSSM would (GeV/c 120 ° Theoretically have been widely A Inaccessible m 100 excluded 80 y The hZ and hA kinematical walls are visible 60 y m >91.0 (exp. 94.6) GeV/c2 40 h 2 Excluded y mA >91.9 (exp. 95.0) GeV/c 20 by LEP 0 0 20 40 60 80 100 120 140 2 mh° (GeV/c ) DELPHIDELPHI ActivitiesActivities G.Gomez-Ceballos,G.Gomez-Ceballos, J.M.J.M.Lopez,Lopez, F.Matorras,F.Matorras, A.A. RuizRuiz τ physics at DELPHI was also a probe of new physics axial and vector leptonic coupling to the Z DELPHI τ P -0.032 Preliminary 0.05 s pling 0 cou -ττ d Z -0.05 an -0.035 m Z-ee H -0.1 easures Vl n m g io mt -0.15 zat lari τ po -0.038 ∆α -0.2 + − l l + − e e -0.25 µ+µ− τ+τ− 68% CL -0.3 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.041 cosΘ -0.503 -0.502 -0.501 -0.5 gAl very good sensitivity to sinθw 0.183 µ e, Preliminary B DELPHI 0,l ± Afb 0.23099 0.00053 ± 0.182 SM prediction Al(Pτ) 0.23159 0.00041 ± m =1777.03+0.30-0.26 MeV Al(SLD) 0.23098 0.00026 τ 0.181 0,b ± Afb 0.23226 0.00031 A0,c 0.23272 ± 0.00079 fb Li0.18fetime and decay BR test W couplings < > ± Qfb 0.2324 0.0012 Average 0.23152 ± 0.00017 0.179 χ2/d.o.f.: 12.8 / 5 10 3 0.178 ] GeV [ 0.177 H (5) 2 ∆α = 0.02761 ± 0.00036 m 10 had ± mZ= 91.1875 0.0021 GeV m = 174.3 ± 5.1 GeV t 0.176 0.23 0.232 0.234 287 288 289 290 291 292 293 294 295 296 297 2θlept τ lifetime (fs) sin eff AntecedentsAntecedents && associatedassociated projectsprojects CDF experiment (Collider Detector at Fermilab): Since Feb. 1999 CDFII Detector upgrade (µ scintillation counters, TOF detector) Physics analysis: B physics, and High Pt physics (Top, Higgs) CMS experiment (Compact Muon Solenoid): Since mid 1994 Detector construction (µ alignment system) Software development (detector specific: simul/reconstruction packages) CompactCompact MuonMuon SolenoidSolenoid (CMS)(CMS) 1040 High precision Muon chambers rest on return iron yoke Detectors position changes are monitorised -Expected cm movement when magnet on/off for further online/offline corrections -T changes, humidity (sub-millimetre range) TheThe CMSCMS AlignmentAlignment SystemSystem Task of the align. system Building blocks: 4 subsystems µ - Internal tracker align. - Measure the relative position of the -chambers, - Internal muon : barrel and endcap and wrt to the TK detectors - The link tracker ⇔ muons (3 alignment planes) - Monitor the stability of Tracker & Muon detectors IFCA, CIEMAT SystemSystem Specifications:Specifications: OptimalOptimal MMuonuon triggertrigger && PPreciserecise momentummomentum measurementmeasurement 1) Trigger rates (L1,L2) (Required pt resolution at each trigger Level) - few mm for L1 & L2 - effect on L2: track quality & pt resolution degrades, with almost no change in c efficiency 2) Track matching/ reconstruction (From Higgs, Z, Z´ processes. Looking at drop in efficiency, fake tracks, track quality) - 0.3 to 0.5 mm for high momentum muons - few mm for low momentum muons 3) Momentum measurement -rφ coordinate: Barrel: 150 (350) µm MB1 (MB4) Endcap: 150 µm ME1 layer It determines the - r & z coordinates: at the mm level design parameters - In r, and because CSCs detector geometry, 0.43 (0.86) mm for 20(10)-degree chambers Link System Layout Light path (1/4 of alignment plane) R-Z Plane To MAB and ME1/2 sensors To ME1/1 sensors 95º To EndCap TK LB: Two Laser diodos -o.f.- 670 nm and 1064 nm R-φ Plane Primary beam (MAB sensors) Secondary beam (ME sensors) ME11 Transfer System Parts Status (1) -CIEMAT -IFCA Laser System - Laser modules - Optical fibers & collimating optics R&D with prototypes Sensors: type & technology • Performance and characterization tests ⇒ sensors specs.