Sapindus Mukorossi Sapindaceae Gaertn
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cupaniopsis Anacardioides (Sapindaceae) Naturalized in Texas
Mink, J.N., J.R. Singhurst, and W.C. Holmes. 2017. Cupaniopsis anacardioides (Sapindaceae) naturalized in Texas. Phytoneuron 2017-9: 1–5. Published 1 February 2017. ISSN 2153 733X CUPANIOPSIS ANACARDIOIDES (SAPINDACEAE) NATURALIZED IN TEXAS JEFFREY N. MINK 176 Downsville Road Robinson, Texas 76706 [email protected] [email protected] JASON R. SINGHURST Wildlife Diversity Program Texas Parks and Wildlife Department 4200 Smith School Road Austin, Texas 78744 WALTER C. HOLMES Department of Biology Baylor University Waco, Texas 76798-7388 ABSTRACT Recent botanical work in Cameron Co., Texas, has resulted in the discovery of naturalized Cupaniopsis anacardioides in the understory of a Sabal mexicana-Ebenopsis ebano forest in a Nature Conservancy preserve. The population includes 30-40 plants of varying age classes from mature to seedling trees. Cupaniopsis (Sapindaceae) is a genus of about 67 species known from Australia, New Guinea, and nearby islands of Micronesia, New Caledonia, and eastern Indonesia (Morat et al. 2012; Reynolds 1985; Hyland et al. 2010). Cupaniopsis anacardioides (carrotwood, tuckeroo) is native to Australia, Indonesia, and Papua New Guinea and has been introduced to the USA –– California (Lockhart et al. 1999), Florida (Oliver 1992), Hawaii (O‘ahu, Frohlich & Lau 2010; Maui, Starr & Starr 2011; and Kauai, Starr & Starr 2015). Establishment in the USA apparently has resulted from its usage in the subtropical nursery trade during the 1950s and early 1960s. The present paper documents the occurrence of the species to Texas, based on the following specimen. TEXAS . Cameron Co.: Nature Conservancy Southmost Preserve 0.7 mi S on Southpoint Rd. from junction of FM 1419 and Southpoint Rd. -
Tree Spacing Is Per the City and County of Honolulu, Department of Parks and Recreation, Division of Urban Forestry - Street Tree Specifications
Recommended Industry Standard Plant Spacing Guidelines TREES: Canopy Spread Street Tree No. Common Botanical Small Medium Large Height Spacing WRA Comments 1 `A`ali`i Dodonaea viscosa X < 30' 25 NL 2 `Ohai Ali`i Caesalpinia pulcherrima X < 20' 25 5 3 `Ohi`a Lehua Metrosideros polymorpha X 80' - 100' 40 NL 4 Alahe`e Psydrax odorata X 3' - 30' 25 NL 5 Autograph Clusia rosea X < 30' 60 5 6 Beach Heliotrope Tournefortia argentea X X 15' - 35' 40 -1 7 Breadfruit Artocarpus altilis X 60' N/A -12 8 Brown Pine Podocarpus elatus X 100' - 125' N/A -2 25' o.c. 9 Carrotwood Cupaniopsis anacardioides X 25' - 40' 40 9 10 Coral Erythrina crista-galli X < 30' 40 6 11 Crape Myrtle Lagerstroemia indica X X < 30' 25 6 12 False Olive Cassine orientalis X < 30' 40 -1 13 False Sandalwood (Naio) Myoporum sandwicense X 30' - 60' N/A NL 60' o.c. 14 Fern Podocarpus Afrocarpus gracilior X 20' - 40' 40 0 15 Geiger (Haole Kou) Cordia sebestena X < 30' N/A -1 40' o.c. 16 Geometry Bucida buceras X 45' - 60' 40 -3 17 Giant Crape Myrtle Lagerstroemia speciosa X 30' - 80' 60 -4 18 Gold tree Roseodendron donnell-smithii X 60' - 90' 85 -4 Handroanthus ochracea subsp. 19 Golden Trumpet neochrysantha X 40' - 60' 60 -3 20 Hala Pandanus tectorius X X < 35' N/A NL 25' o.c. 21 Hau Hibiscus tiliaceus X X < 35' N/A NL 40' o.c. 22 Hau (Variegated) Hibiscus tiliaceus forma X < 30' 25 NL 23 Ho`awa Pittosporum hosmeri X < 30' 25 NL 24 Hong Kong Orchid Bauhinia xblakeana X 25' - 35' 40 -7 Recommended Industry Standard Plant Spacing Guidelines TREES: Canopy Spread Street Tree No. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Acer Binzayedii (Sapindaceae), a New Maple Species from Mexico
Acer binzayedii (Sapindaceae), a new maple species from Mexico Yalma L. Vargas-Rodriguez, Lowell E. Urbatsch, Vesna Karaman-Castro & Blanca L. Figueroa-Rangel Brittonia ISSN 0007-196X Brittonia DOI 10.1007/s12228-017-9465-5 1 23 Your article is protected by copyright and all rights are held exclusively by The New York Botanical Garden. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Acer binzayedii (Sapindaceae), a new maple species from Mexico 1,2 1 1 YALMA L. VARGAS-RODRIGUEZ ,LOWELL E. URBATSCH ,VESNA KARAMAN-CASTRO , 3 AND BLANCA L. FIGUEROA-RANGEL 1 Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA; e-mail: [email protected] 2 National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de México, 03940 D.F., México 3 Department of Ecology and Natural Resources, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Av. Independencia Nacional 151, 48900, Autlán de Navarro, Jalisco, México Abstract. -
Adeyemi Et Al., 2012)
Ife Journal of Science vol. 15, no. 2 (2013) 303 A REVIEW OF THE TAXONOMY OF AFRICAN SAPINDACEAE BASED ON QUANTITATIVE AND QUALITATIVE CHARACTERS *Adeyemi, T.O., Ogundipe, O.T. and Olowokudejo, J.D. Department of Botany, University of Lagos, Akoka, Lagos, Nigeria. e-mail addresses: [email protected], [email protected], [email protected] *Corresponding author: [email protected], +2348029180930 (Received: April, 2013; Accepted: June, 2013) ABSTRACT This study was conducted using qualitative and quantitative morphology to characterise and group different representative species of the family Sapindaceae in Africa. The morphological characters used included leaf, stem and fruit. Essentially, the similarities among various taxa in the family were estimated. A total of 28 genera and 106 species were assessed. Members possess compound leaves (paripinnate, imparipinnate or trifoliolate); flowers are in clusters, fruits occur as berry, drupe or capsule and contain seed with white or orange aril. UPGMA dendograms were generated showing relationships amongst taxa studied. The dendograms consists of a single cluster from 0 57 % similarity coefficients suggesting a single line decent of the members of the family. At 65 % two clusters were observed with Majidea fosterii being separated from the cluster. Also, at 67 % similarity coefficient, two clusters were discerned separating the climbing forms from the shrubby forms. Paullinia pinnata was separated from the other climbing forms at 67 % while Allophylus species were separated into two clusters at 91 % similarity coefficient. The dendograms revealed that the family can be separated into eleven (11) clusters based on qualitative morphological data. A key to the identification of genera is presented in this work. -
Sapindus Saponaria Florida Soapberry1 Edward F
Fact Sheet ST-582 October 1994 Sapindus saponaria Florida Soapberry1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Florida Soapberry grows at a moderate rate to 30 to 40 feet tall (Fig. 1). The pinnately compound, evergreen leaves are 12 inches long with each leaflet four inches long. Ten-inch-long panicles of small, white flowers appear during fall, winter, and spring but these are fairly inconspicuous. The fleshy fruits which follow are less than an inch-long, shiny, and orange/brown. The seeds inside are poisonous, a fact which should be considered in the tree’s placement in the landscape, especially if children will be present. The bark is rough and gray. The common name of Soapberry comes from to the soap-like material which is made from the berries in tropical countries. Figure 1. Mature Florida Soapberry. GENERAL INFORMATION DESCRIPTION Scientific name: Sapindus saponaria Height: 30 to 40 feet Pronunciation: SAP-in-dus sap-oh-NAIR-ee-uh Spread: 25 to 35 feet Common name(s): Florida Soapberry, Wingleaf Crown uniformity: symmetrical canopy with a Soapberry regular (or smooth) outline, and individuals have more Family: Sapindaceae or less identical crown forms USDA hardiness zones: 10 through 11 (Fig. 2) Crown shape: round Origin: native to North America Crown density: dense Uses: wide tree lawns (>6 feet wide); medium-sized Growth rate: medium tree lawns (4-6 feet wide); recommended for buffer Texture: medium strips around parking lots or for median strip plantings in the highway; reclamation plant; shade tree; Foliage residential street tree; no proven urban tolerance Availability: somewhat available, may have to go out Leaf arrangement: alternate (Fig. -
Aspects of Ecology and Conservation of the Pygmy Loris Nycticebus Pygmaeus in Vietnam
Aus dem Institut für Zoologie, Fischkrankheiten und Fischereibiologie der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Angefertigt am Endangered Primate Rescue Center Cuc Phuong National Park Vietnam Aspects of Ecology and Conservation of the Pygmy Loris Nycticebus pygmaeus in Vietnam Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians Universität München vorgelegt von Ulrike Streicher aus Bamberg München, Oktober 2004 Dem Andenken meines Vaters Preface The first pygmy lorises came to the Endangered Primate Rescue Center in 1995 and were not much more than the hobby of the first animal keeper, Manuela Klöden. They were at that time, even by Vietnamese scientists or foreign primate experts, considered not very important. They were abundant in the trade and there was little concern about their wild status. It has often been the fate of animals that are considered common not to be considered worth detailed studies. But working with confiscated pygmy lorises we discovered a number of interesting facts about them. They seasonally changed the pelage colour, they showed regular weight variations, and they did not eat in certain times of the year. And I met people interested in lorises and told them, what I had observed and realized these facts were not known. So I started to collect data more or less to proof what we had observed at the centre. Due to the daily veterinary tasks data collection was rather randomly and unfocussed. But the more we got to know about the pygmy lorises, the more interesting it became. The answer to one question immediately generated a number of consecutive questions. -
Georgia Native Trees Considered Invasive in Other Parts of the Country. Scientific Name Common Name Scientific Name Common Name
Invasive Trees of Georgia Dr. Kim D. Coder, Professor of Tree Biology & Health Care, Warnell School, UGA Georgia has many species of trees. Some are native trees and some have been introduced from outside the state, nation, or continent. Most of Georgia’s trees are well-behaved and easily develop into sustainable shade and street trees. A few tree species have an extrodinary ability to upsurp resources and take over sites from other plants. These trees are called invasive because they effectively invade sites, many times eliminating other species of plants. There are a few tree species native to Georgia which are considered invasive in other parts of the country. These native invasives, may be well-behaved in Georgia, but reproduce and take over sites elsewhere, and so have gained an invasive status from at least one other invasive species list. Table 1. There are hundreds of trees which have been introduced to Georgia landscapes. Some of these exotic / naturalized trees are considered invasive. The selected list of Georgia invasive trees listed here are notorious for growing rampantly and being diffi- cult to eradicate. Table 2. They should not be planted. Table 1: Georgia native trees considered invasive in other parts of the country. scientific name common name scientific name common name Acacia farnesiana sweet acacia Myrica cerifera Southern bayberry Acer negundo boxelder Pinus taeda loblolly pine Acer rubrum red maple Populus deltoides Eastern Fraxinus americana white ash cottonwood Fraxinus pennsylvanica green ash Prunus serotina black cherry Gleditsia triacanthos honeylocust Robinia pseudoacacia black locust Juniperus virginiana eastern Toxicodendron vernix poison sumac redcedar Table 2: Introduced (exotic) tree / shrub species found in Georgia listed at a regional / national level as being ecologically invasive. -
Hypericaceae) Heritiana S
University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 5-19-2017 Systematics, Biogeography, and Species Delimitation of the Malagasy Psorospermum (Hypericaceae) Heritiana S. Ranarivelo University of Missouri-St.Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Botany Commons Recommended Citation Ranarivelo, Heritiana S., "Systematics, Biogeography, and Species Delimitation of the Malagasy Psorospermum (Hypericaceae)" (2017). Dissertations. 690. https://irl.umsl.edu/dissertation/690 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Systematics, Biogeography, and Species Delimitation of the Malagasy Psorospermum (Hypericaceae) Heritiana S. Ranarivelo MS, Biology, San Francisco State University, 2010 A Dissertation Submitted to The Graduate School at the University of Missouri-St. Louis in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biology with an emphasis in Ecology, Evolution, and Systematics August 2017 Advisory Committee Peter F. Stevens, Ph.D. Chairperson Peter C. Hoch, Ph.D. Elizabeth A. Kellogg, PhD Brad R. Ruhfel, PhD Copyright, Heritiana S. Ranarivelo, 2017 1 ABSTRACT Psorospermum belongs to the tribe Vismieae (Hypericaceae). Morphologically, Psorospermum is very similar to Harungana, which also belongs to Vismieae along with another genus, Vismia. Interestingly, Harungana occurs in both Madagascar and mainland Africa, as does Psorospermum; Vismia occurs in both Africa and the New World. However, the phylogeny of the tribe and the relationship between the three genera are uncertain. -
Natural Surfactant Saponin from Tissue of Litsea Glutinosa and Its Alternative Sustainable Production
plants Article Natural Surfactant Saponin from Tissue of Litsea glutinosa and Its Alternative Sustainable Production Jiratchaya Wisetkomolmat 1,2, Ratchuporn Suksathan 3, Ratchadawan Puangpradab 3, Keawalin Kunasakdakul 4, Kittisak Jantanasakulwong 5,6, Pornchai Rachtanapun 5,6 and Sarana Rose Sommano 2,5,7,* 1 Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 2 Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 3 Research and Product Development, Department of Research and Conservation, Queen Sirikit Botanic Garden, The Botanical Garden Organisation, Chiang Mai 50180, Thailand; [email protected] (R.S.); [email protected] (R.P.) 4 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] 5 Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; [email protected] (K.J.); [email protected] (P.R.) 6 Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand 7 Innovative Agriculture Research Centre, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand * Correspondence: [email protected]; Tel.: +66-53944040 Received: 8 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Abstract: In this research, we assessed the detergency properties along with chemical characteristic of the surfactant extracts from the most frequently cited detergent plants in Northern Thailand, namely, Sapindus rarak, Acacia concinna, and Litsea glutinosa. Moreover, as to provide the sustainable option for production of such valuable ingredients, plant tissue culture (PTC) as alternative method for industrial metabolite cultivation was also proposed herein. -
Vascular Plant Families of the United States Grouped by Diagnostic Features
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 12-6-2019 Vascular Plant Families of the United States Grouped by Diagnostic Features James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Vascular Plant Families of the United States Grouped by Diagnostic Features" (2019). Botanical Studies. 96. https://digitalcommons.humboldt.edu/botany_jps/96 This Flora of the United States and North America is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. FLOWERING PLANT FAMILIES OF THE UNITED STATES GROUPED BY DIAGNOSTIC FEATURES James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Second edition — 6 December 2019 The focus is on families of plants found in the conterminous United States, including ornamentals. The listing of a family is not meant to imply that every species has that feature. I am using a fewfamily names, such as Liliaceae, Plantaginaceae, and Scrophulariaceae, in the traditional sense, because their limits remain unsettled. Parasitic on branches Dioscoreaceae -
Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
Flora of South Australia 5th Edition | Edited by Jürgen Kellermann KEY TO FAMILIES1 J.P. Jessop2 The sequence of families used in this Flora follows closely the one adopted by the Australian Plant Census (www.anbg.gov. au/chah/apc), which in turn is based on that of the Angiosperm Phylogeny Group (APG III 2009) and Mabberley’s Plant Book (Mabberley 2008). It differs from previous editions of the Flora, which were mainly based on the classification system of Engler & Gilg (1919). A list of all families recognised in this Flora is printed in the inside cover pages with families already published highlighted in bold. The up-take of this new system by the State Herbarium of South Australia is still in progress and the S.A. Census database (www.flora.sa.gov.au/census.shtml) still uses the old classification of families. The Australian Plant Census web-site presents comparison tables of the old and new systems on family and genus level. A good overview of all families can be found in Heywood et al. (2007) and Stevens (2001–), although these authors accept a slightly different family classification. A number of names with which people using this key may be familiar but are not employed in the system used in this work have been included for convenience and are enclosed on quotation marks. 1. Plants reproducing by spores and not producing flowers (“Ferns and lycopods”) 2. Aerial shoots either dichotomously branched, with scale leaves and 3-lobed sporophores or plants with fronds consisting of a simple or divided sterile blade and a simple or branched spikelike sporophore ..................................................................................