Lecture 6: October 19, 2015 1 Singular Value Decomposition

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 6: October 19, 2015 1 Singular Value Decomposition Mathematical Toolkit Autumn 2015 Lecture 6: October 19, 2015 Lecturer: Madhur Tulsiani 1 Singular Value Decomposition Let V; W be finite-dimensional inner product spaces and let ' : V ! W be a linear transformation. Since the domain and range of ' are different, we cannot analyze it in terms of eigenvectors. However, we can use the spectral theorem to analyze the operators '∗' : V ! V and ''∗ : W ! W and use their eigenvectors to derive a nice decomposition of '. This is known as the singular value decomposition (SVD) of '. Proposition 1.1 Let ' : V ! W be a linear transformation. Then '∗' : V ! V and ''∗ : W ! W are positive semidefinite linear operators with the same non-zero eigenvalues. In fact, we can notice the following from the proof of the above proposition Proposition 1.2 Let v be an eigenvector of '∗' with eigenvalue λ 6= 0. Then '(v) is an eigen- vector of ''∗ with eigenvalue λ. Similarly, if w is an eigenvector of ''∗ with eigenvalue λ 6= 0, then '∗(w) is an eigenvector of '∗' with eigenvalue λ. Using the above, we get the following 2 2 2 ∗ Proposition 1.3 Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the non-zero eigenvalues of ' ', and let v1; : : : ; vr be a corresponding othronormal eigenbasis. For w1; : : : ; wr defined as wi = '(vi)/σi, we have that 1. fw1; : : : ; wrg form an orthonormal set. 2. For all i 2 [r] ∗ '(vi) = σi · wi and ' (wi) = σi · vi : The values σ1; : : : ; σr are known as the (non-zero) singular values of '. For each i 2 [r], the vector vi is known as the right singular vector and wi is known as the right singular vector corresponding to the singular value σi. Proposition 1.4 Let r be the number of non-zero eigenvalues of '∗'. Then, rank(') = dim(im(')) = r : Using the above, we can write ' in a particularly convenient form. We first need the following definition. 1 Definition 1.5 Let V; W be inner product spaces and let v 2 V; w 2 W be any two vectors. The outer product of w with v, denoted as jwi hvj, is a linear transformation from V to W such that jwi hvj (u) := hu; vi · w : Note that if kvk = 1, then jwi hvj (v) = w and jwi hvj (u) = 0 for all u ? v. Also, note that the rank of the linear transformation defined above is one. We can then write ' : V ! W in terms of outer products of its singular vectors. Proposition 1.6 Let V; W be finite dimensional inner product spaces and let ' : V ! W be a linear transformation with non-zero singular values σ1; : : : ; σr, right singular vectors v1; : : : ; vr and left singular vectors w1; : : : ; wr. Then, r X ' = σi · jwii hvij : i=1 2 Singular Value Decomposition for matrices m×n Using the previous discussion, we can write matrices in convenient form. Let A 2 C , which can n m be thought of as an operator from C to C . Let σ1; : : : ; σr be the non-zero singular values and let n v1; : : : ; vr and w1; : : : ; wr be the right and left singular vectors respectively. Note that V = C and m ∗ ∗ W = C and v 2 V; w 2 W , we can write the operator jwi hvj as the matrix wv , there v denotes vT . This is because for any u 2 V , wv∗u = w(v∗u) = hu; vi · w. Thus, we can write r X ∗ A = σi · wivi : i=1 m×r th Let W 2 C be a matrix with w1; : : : ; wr as columns, such that i column equals wi. Similarly, n×r r×r let V 2 C be a matrix with v1; : : : ; vr as the columns. Let Σ 2 C be a diagonal matrix with Σii = σi. Then, check that the above expression for A can also be written as A = W ΣV ∗ ; where V ∗ = V T as before. n m We can also complete the bases fv1; : : : ; vrg and fw1; : : : ; wrg to bases for C and C respectively and write the above in terms of unitary matrices. n×n Definition 2.1 A matrix U 2 C is known as a unitary matrix if the columns of U form an n orthonormal basis for C . n×n ∗ ∗ Proposition 2.2 Let U 2 C be a unitary matrix. Then UU = U U = id, where id denotes the identity matrix. n n×n Let fv1; : : : ; vng be a completion of fv1; : : : ; vrg to an orthonormal basis of C , and let Vn 2 C m×m be a unitary matrix with fv1; : : : ; vng as columns. Similarly, let Wm 2 C be a unitary matrix 0 m×n 0 with a completion of fw1; : : : ; wrg as columns. Let Σ 2 C be a matrix with Σii = σi if i ≤ r, and all other entries equal to zero. Then, we can also write 0 ∗ A = WmΣ Vn : 2 2.1 SVD as a low-rank approximation for matrices m×n Given a matrix A 2 C , we want to find a matrix B of rank at most k which \approximates" A. For now we will consider the notion of approximation in spectral norm i.e., we want to minimixe kA − Bk2, where k(A − B)xk2 k(A − B)k2 = inf : x6=0 kxk2 SVD also gives the optimal solution for another notion of approximation: minimizing the Frobenius 1=2 P 2 Pr ∗ norm kA − BkF , which equals ij(Aij − Bij) . We will see this later. Let A = i=1 wivi be the singular value decomposition of A and let σ1 ≥ · · · ≥ σr > 0. If k ≥ r, we can simply use Pk ∗ B = A since rank(A) = r. If k < r, we claim that Ak = i=1 σiwivi is the optimal solution. If is easy to check the following. Proposition 2.3 kA − Akk2 = σk+1. We also show the following. m×n Proposition 2.4 Let B 2 C have rank(B) ≤ k and let k < r. Then kA − Bk2 ≥ σk+1. Proof: By rank-nullity theorem dim(ker(A)) ≥ n−k and thus, dim (ker(A) \ Span (v1; : : : ; vk+1)) ≥ 1. Let z 2 ker(A) \ Span (v1; : : : ; vk+1) n f0g. Then, 2 2 ∗ ∗ k(A − B)zk2 = kAzk2 = hA Az; zi ≥ min hA Az; zi z2Span(v1;:::;vk+1)nf0g 0 2 ≥ min RA∗A(z ) · kzk 0 2 z 2Span(v1;:::;vk+1)nf0g 2 2 ≥ σk+1 · kzk2 : Thus, there exists a z 6= 0 such that k(A − B)zk2 ≥ σk+1 ·kzk2, which implies kA − Bk2 ≥ σk+1. 3.
Recommended publications
  • Singular Value Decomposition (SVD)
    San José State University Math 253: Mathematical Methods for Data Visualization Lecture 5: Singular Value Decomposition (SVD) Dr. Guangliang Chen Outline • Matrix SVD Singular Value Decomposition (SVD) Introduction We have seen that symmetric matrices are always (orthogonally) diagonalizable. That is, for any symmetric matrix A ∈ Rn×n, there exist an orthogonal matrix Q = [q1 ... qn] and a diagonal matrix Λ = diag(λ1, . , λn), both real and square, such that A = QΛQT . We have pointed out that λi’s are the eigenvalues of A and qi’s the corresponding eigenvectors (which are orthogonal to each other and have unit norm). Thus, such a factorization is called the eigendecomposition of A, also called the spectral decomposition of A. What about general rectangular matrices? Dr. Guangliang Chen | Mathematics & Statistics, San José State University3/22 Singular Value Decomposition (SVD) Existence of the SVD for general matrices Theorem: For any matrix X ∈ Rn×d, there exist two orthogonal matrices U ∈ Rn×n, V ∈ Rd×d and a nonnegative, “diagonal” matrix Σ ∈ Rn×d (of the same size as X) such that T Xn×d = Un×nΣn×dVd×d. Remark. This is called the Singular Value Decomposition (SVD) of X: • The diagonals of Σ are called the singular values of X (often sorted in decreasing order). • The columns of U are called the left singular vectors of X. • The columns of V are called the right singular vectors of X. Dr. Guangliang Chen | Mathematics & Statistics, San José State University4/22 Singular Value Decomposition (SVD) * * b * b (n>d) b b b * b = * * = b b b * (n<d) * b * * b b Dr.
    [Show full text]
  • Eigen Values and Vectors Matrices and Eigen Vectors
    EIGEN VALUES AND VECTORS MATRICES AND EIGEN VECTORS 2 3 1 11 × = [2 1] [3] [ 5 ] 2 3 3 12 3 × = = 4 × [2 1] [2] [ 8 ] [2] • Scale 3 6 2 × = [2] [4] 2 3 6 24 6 × = = 4 × [2 1] [4] [16] [4] 2 EIGEN VECTOR - PROPERTIES • Eigen vectors can only be found for square matrices • Not every square matrix has eigen vectors. • Given an n x n matrix that does have eigenvectors, there are n of them for example, given a 3 x 3 matrix, there are 3 eigenvectors. • Even if we scale the vector by some amount, we still get the same multiple 3 EIGEN VECTOR - PROPERTIES • Even if we scale the vector by some amount, we still get the same multiple • Because all you’re doing is making it longer, not changing its direction. • All the eigenvectors of a matrix are perpendicular or orthogonal. • This means you can express the data in terms of these perpendicular eigenvectors. • Also, when we find eigenvectors we usually normalize them to length one. 4 EIGEN VALUES - PROPERTIES • Eigenvalues are closely related to eigenvectors. • These scale the eigenvectors • eigenvalues and eigenvectors always come in pairs. 2 3 6 24 6 × = = 4 × [2 1] [4] [16] [4] 5 SPECTRAL THEOREM Theorem: If A ∈ ℝm×n is symmetric matrix (meaning AT = A), then, there exist real numbers (the eigenvalues) λ1, …, λn and orthogonal, non-zero real vectors ϕ1, ϕ2, …, ϕn (the eigenvectors) such that for each i = 1,2,…, n : Aϕi = λiϕi 6 EXAMPLE 30 28 A = [28 30] From spectral theorem: Aϕ = λϕ 7 EXAMPLE 30 28 A = [28 30] From spectral theorem: Aϕ = λϕ ⟹ Aϕ − λIϕ = 0 (A − λI)ϕ = 0 30 − λ 28 = 0 ⟹ λ = 58 and
    [Show full text]
  • Singular Value Decomposition (SVD) 2 1.1 Singular Vectors
    Contents 1 Singular Value Decomposition (SVD) 2 1.1 Singular Vectors . .3 1.2 Singular Value Decomposition (SVD) . .7 1.3 Best Rank k Approximations . .8 1.4 Power Method for Computing the Singular Value Decomposition . 11 1.5 Applications of Singular Value Decomposition . 16 1.5.1 Principal Component Analysis . 16 1.5.2 Clustering a Mixture of Spherical Gaussians . 16 1.5.3 An Application of SVD to a Discrete Optimization Problem . 22 1.5.4 SVD as a Compression Algorithm . 24 1.5.5 Spectral Decomposition . 24 1.5.6 Singular Vectors and ranking documents . 25 1.6 Bibliographic Notes . 27 1.7 Exercises . 28 1 1 Singular Value Decomposition (SVD) The singular value decomposition of a matrix A is the factorization of A into the product of three matrices A = UDV T where the columns of U and V are orthonormal and the matrix D is diagonal with positive real entries. The SVD is useful in many tasks. Here we mention some examples. First, in many applications, the data matrix A is close to a matrix of low rank and it is useful to find a low rank matrix which is a good approximation to the data matrix . We will show that from the singular value decomposition of A, we can get the matrix B of rank k which best approximates A; in fact we can do this for every k. Also, singular value decomposition is defined for all matrices (rectangular or square) unlike the more commonly used spectral decomposition in Linear Algebra. The reader familiar with eigenvectors and eigenvalues (we do not assume familiarity here) will also realize that we need conditions on the matrix to ensure orthogonality of eigenvectors.
    [Show full text]
  • A Singularly Valuable Decomposition: the SVD of a Matrix Dan Kalman
    A Singularly Valuable Decomposition: The SVD of a Matrix Dan Kalman Dan Kalman is an assistant professor at American University in Washington, DC. From 1985 to 1993 he worked as an applied mathematician in the aerospace industry. It was during that period that he first learned about the SVD and its applications. He is very happy to be teaching again and is avidly following all the discussions and presentations about the teaching of linear algebra. Every teacher of linear algebra should be familiar with the matrix singular value deco~??positiolz(or SVD). It has interesting and attractive algebraic properties, and conveys important geometrical and theoretical insights about linear transformations. The close connection between the SVD and the well-known theo1-j~of diagonalization for sylnmetric matrices makes the topic immediately accessible to linear algebra teachers and, indeed, a natural extension of what these teachers already know. At the same time, the SVD has fundamental importance in several different applications of linear algebra. Gilbert Strang was aware of these facts when he introduced the SVD in his now classical text [22, p. 1421, obselving that "it is not nearly as famous as it should be." Golub and Van Loan ascribe a central significance to the SVD in their defini- tive explication of numerical matrix methods [8, p, xivl, stating that "perhaps the most recurring theme in the book is the practical and theoretical value" of the SVD. Additional evidence of the SVD's significance is its central role in a number of re- cent papers in :Matlgenzatics ivlagazine and the Atnericalz Mathematical ilironthly; for example, [2, 3, 17, 231.
    [Show full text]
  • Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions
    Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions Xin Liu∗ Zaiwen Weny Yin Zhangz March 22, 2012 Abstract In many data-intensive applications, the use of principal component analysis (PCA) and other related techniques is ubiquitous for dimension reduction, data mining or other transformational purposes. Such transformations often require efficiently, reliably and accurately computing dominant singular value de- compositions (SVDs) of large unstructured matrices. In this paper, we propose and study a subspace optimization technique to significantly accelerate the classic simultaneous iteration method. We analyze the convergence of the proposed algorithm, and numerically compare it with several state-of-the-art SVD solvers under the MATLAB environment. Extensive computational results show that on a wide range of large unstructured matrices, the proposed algorithm can often provide improved efficiency or robustness over existing algorithms. Keywords. subspace optimization, dominant singular value decomposition, Krylov subspace, eigen- value decomposition 1 Introduction Singular value decomposition (SVD) is a fundamental and enormously useful tool in matrix computations, such as determining the pseudo-inverse, the range or null space, or the rank of a matrix, solving regular or total least squares data fitting problems, or computing low-rank approximations to a matrix, just to mention a few. The need for computing SVDs also frequently arises from diverse fields in statistics, signal processing, data mining or compression, and from various dimension-reduction models of large-scale dynamic systems. Usually, instead of acquiring all the singular values and vectors of a matrix, it suffices to compute a set of dominant (i.e., the largest) singular values and their corresponding singular vectors in order to obtain the most valuable and relevant information about the underlying dataset or system.
    [Show full text]
  • Notes on the Spectral Theorem
    Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner prod- uct space V has an adjoint. (T ∗ is defined as the unique linear operator on V such that hT (x), yi = hx, T ∗(y)i for every x, y ∈ V – see Theroems 6.8 and 6.9.) When V is infinite dimensional, the adjoint T ∗ may or may not exist. One useful fact (Theorem 6.10) is that if β is an orthonormal basis for a finite dimen- ∗ ∗ sional inner product space V , then [T ]β = [T ]β. That is, the matrix representation of the operator T ∗ is equal to the complex conjugate of the matrix representation for T . For a general vector space V , and a linear operator T , we have already asked the ques- tion “when is there a basis of V consisting only of eigenvectors of T ?” – this is exactly when T is diagonalizable. Now, for an inner product space V , we know how to check whether vec- tors are orthogonal, and we know how to define the norms of vectors, so we can ask “when is there an orthonormal basis of V consisting only of eigenvectors of T ?” Clearly, if there is such a basis, T is diagonalizable – and moreover, eigenvectors with distinct eigenvalues must be orthogonal. Definitions Let V be an inner product space. Let T ∈ L(V ). (a) T is normal if T ∗T = TT ∗ (b) T is self-adjoint if T ∗ = T For the next two definitions, assume V is finite-dimensional: Then, (c) T is unitary if F = C and kT (x)k = kxk for every x ∈ V (d) T is orthogonal if F = R and kT (x)k = kxk for every x ∈ V Notes 1.
    [Show full text]
  • Asymptotic Spectral Measures: Between Quantum Theory and E
    Asymptotic Spectral Measures: Between Quantum Theory and E-theory Jody Trout Department of Mathematics Dartmouth College Hanover, NH 03755 Email: [email protected] Abstract— We review the relationship between positive of classical observables to the C∗-algebra of quantum operator-valued measures (POVMs) in quantum measurement observables. See the papers [12]–[14] and theB books [15], C∗ E theory and asymptotic morphisms in the -algebra -theory of [16] for more on the connections between operator algebra Connes and Higson. The theory of asymptotic spectral measures, as introduced by Martinez and Trout [1], is integrally related K-theory, E-theory, and quantization. to positive asymptotic morphisms on locally compact spaces In [1], Martinez and Trout showed that there is a fundamen- via an asymptotic Riesz Representation Theorem. Examples tal quantum-E-theory relationship by introducing the concept and applications to quantum physics, including quantum noise of an asymptotic spectral measure (ASM or asymptotic PVM) models, semiclassical limits, pure spin one-half systems and quantum information processing will also be discussed. A~ ~ :Σ ( ) { } ∈(0,1] →B H I. INTRODUCTION associated to a measurable space (X, Σ). (See Definition 4.1.) In the von Neumann Hilbert space model [2] of quantum Roughly, this is a continuous family of POV-measures which mechanics, quantum observables are modeled as self-adjoint are “asymptotically” projective (or quasiprojective) as ~ 0: → operators on the Hilbert space of states of the quantum system. ′ ′ A~(∆ ∆ ) A~(∆)A~(∆ ) 0 as ~ 0 The Spectral Theorem relates this theoretical view of a quan- ∩ − → → tum observable to the more operational one of a projection- for certain measurable sets ∆, ∆′ Σ.
    [Show full text]
  • The Spectral Theorem for Self-Adjoint and Unitary Operators Michael Taylor Contents 1. Introduction 2. Functions of a Self-Adjoi
    The Spectral Theorem for Self-Adjoint and Unitary Operators Michael Taylor Contents 1. Introduction 2. Functions of a self-adjoint operator 3. Spectral theorem for bounded self-adjoint operators 4. Functions of unitary operators 5. Spectral theorem for unitary operators 6. Alternative approach 7. From Theorem 1.2 to Theorem 1.1 A. Spectral projections B. Unbounded self-adjoint operators C. Von Neumann's mean ergodic theorem 1 2 1. Introduction If H is a Hilbert space, a bounded linear operator A : H ! H (A 2 L(H)) has an adjoint A∗ : H ! H defined by (1.1) (Au; v) = (u; A∗v); u; v 2 H: We say A is self-adjoint if A = A∗. We say U 2 L(H) is unitary if U ∗ = U −1. More generally, if H is another Hilbert space, we say Φ 2 L(H; H) is unitary provided Φ is one-to-one and onto, and (Φu; Φv)H = (u; v)H , for all u; v 2 H. If dim H = n < 1, each self-adjoint A 2 L(H) has the property that H has an orthonormal basis of eigenvectors of A. The same holds for each unitary U 2 L(H). Proofs can be found in xx11{12, Chapter 2, of [T3]. Here, we aim to prove the following infinite dimensional variant of such a result, called the Spectral Theorem. Theorem 1.1. If A 2 L(H) is self-adjoint, there exists a measure space (X; F; µ), a unitary map Φ: H ! L2(X; µ), and a 2 L1(X; µ), such that (1.2) ΦAΦ−1f(x) = a(x)f(x); 8 f 2 L2(X; µ): Here, a is real valued, and kakL1 = kAk.
    [Show full text]
  • 7 Spectral Properties of Matrices
    7 Spectral Properties of Matrices 7.1 Introduction The existence of directions that are preserved by linear transformations (which are referred to as eigenvectors) has been discovered by L. Euler in his study of movements of rigid bodies. This work was continued by Lagrange, Cauchy, Fourier, and Hermite. The study of eigenvectors and eigenvalues acquired in- creasing significance through its applications in heat propagation and stability theory. Later, Hilbert initiated the study of eigenvalue in functional analysis (in the theory of integral operators). He introduced the terms of eigenvalue and eigenvector. The term eigenvalue is a German-English hybrid formed from the German word eigen which means “own” and the English word “value”. It is interesting that Cauchy referred to the same concept as characteristic value and the term characteristic polynomial of a matrix (which we introduce in Definition 7.1) was derived from this naming. We present the notions of geometric and algebraic multiplicities of eigen- values, examine properties of spectra of special matrices, discuss variational characterizations of spectra and the relationships between matrix norms and eigenvalues. We conclude this chapter with a section dedicated to singular values of matrices. 7.2 Eigenvalues and Eigenvectors Let A Cn×n be a square matrix. An eigenpair of A is a pair (λ, x) C (Cn∈ 0 ) such that Ax = λx. We refer to λ is an eigenvalue and to ∈x is× an eigenvector−{ } . The set of eigenvalues of A is the spectrum of A and will be denoted by spec(A). If (λ, x) is an eigenpair of A, the linear system Ax = λx has a non-trivial solution in x.
    [Show full text]
  • Veral Versions of the Spectral Theorem for Normal Operators in Hilbert Spaces
    10. The Spectral Theorem The big moment has arrived, and we are now ready to prove se- veral versions of the spectral theorem for normal operators in Hilbert spaces. Throughout this chapter, it should be helpful to compare our results with the more familiar special case when the Hilbert space is finite-dimensional. In this setting, the spectral theorem says that every normal matrix T 2 Cn×n can be diagonalized by a unitary transfor- mation. This can be rephrased as follows: There are numbers zj 2 C n (the eigenvalues) and orthogonal projections Pj 2 B(C ) such that Pm T = j=1 zjPj. The subspaces R(Pj) are orthogonal to each other. From this representation of T , it is then also clear that Pj is the pro- jection onto the eigenspace belonging to zj. In fact, we have already proved one version of the (general) spec- tral theorem: The Gelfand theory of the commutative C∗-algebra A ⊆ B(H) that is generated by a normal operator T 2 B(H) provides a functional calculus: We can define f(T ), for f 2 C(σ(T )) in such a way that the map C(σ(T )) ! A, f 7! f(T ) is an isometric ∗-isomorphism between C∗-algebras, and this is the spectral theorem in one of its ma- ny disguises! See Theorem 9.13 and the discussion that follows. As a warm-up, let us use this material to give a quick proof of the result about normal matrices T 2 Cn×n that was stated above. Consider the C∗-algebra A ⊆ Cn×n that is generated by T .
    [Show full text]
  • Chapter 6 the Singular Value Decomposition Ax=B Version of 11 April 2019
    Matrix Methods for Computational Modeling and Data Analytics Virginia Tech Spring 2019 · Mark Embree [email protected] Chapter 6 The Singular Value Decomposition Ax=b version of 11 April 2019 The singular value decomposition (SVD) is among the most important and widely applicable matrix factorizations. It provides a natural way to untangle a matrix into its four fundamental subspaces, and reveals the relative importance of each direction within those subspaces. Thus the singular value decomposition is a vital tool for analyzing data, and it provides a slick way to understand (and prove) many fundamental results in matrix theory. It is the perfect tool for solving least squares problems, and provides the best way to approximate a matrix with one of lower rank. These notes construct the SVD in various forms, then describe a few of its most compelling applications. 6.1 Eigenvalues and eigenvectors of symmetric matrices To derive the singular value decomposition of a general (rectangu- lar) matrix A IR m n, we shall rely on several special properties of 2 ⇥ the square, symmetric matrix ATA. While this course assumes you are well acquainted with eigenvalues and eigenvectors, we will re- call some fundamental concepts, especially pertaining to symmetric matrices. 6.1.1 A passing nod to complex numbers Recall that even if a matrix has real number entries, it could have eigenvalues that are complex numbers; the corresponding eigenvec- tors will also have complex entries. Consider, for example, the matrix 0 1 S = − . " 10# 73 To find the eigenvalues of S, form the characteristic polynomial l 1 det(lI S)=det = l2 + 1.
    [Show full text]
  • ASYMPTOTICALLY ISOSPECTRAL QUANTUM GRAPHS and TRIGONOMETRIC POLYNOMIALS. Pavel Kurasov, Rune Suhr
    ISSN: 1401-5617 ASYMPTOTICALLY ISOSPECTRAL QUANTUM GRAPHS AND TRIGONOMETRIC POLYNOMIALS. Pavel Kurasov, Rune Suhr Research Reports in Mathematics Number 2, 2018 Department of Mathematics Stockholm University Electronic version of this document is available at http://www.math.su.se/reports/2018/2 Date of publication: Maj 16, 2018. 2010 Mathematics Subject Classification: Primary 34L25, 81U40; Secondary 35P25, 81V99. Keywords: Quantum graphs, almost periodic functions. Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden Electronic addresses: http://www.math.su.se/ [email protected] Asymptotically isospectral quantum graphs and generalised trigonometric polynomials Pavel Kurasov and Rune Suhr Dept. of Mathematics, Stockholm Univ., 106 91 Stockholm, SWEDEN [email protected], [email protected] Abstract The theory of almost periodic functions is used to investigate spectral prop- erties of Schr¨odinger operators on metric graphs, also known as quantum graphs. In particular we prove that two Schr¨odingeroperators may have asymptotically close spectra if and only if the corresponding reference Lapla- cians are isospectral. Our result implies that a Schr¨odingeroperator is isospectral to the standard Laplacian on a may be different metric graph only if the potential is identically equal to zero. Keywords: Quantum graphs, almost periodic functions 2000 MSC: 34L15, 35R30, 81Q10 Introduction. The current paper is devoted to the spectral theory of quantum graphs, more precisely to the direct and inverse spectral theory of Schr¨odingerop- erators on metric graphs [3, 20, 24]. Such operators are defined by three parameters: a finite compact metric graph Γ; • a real integrable potential q L (Γ); • ∈ 1 vertex conditions, which can be parametrised by unitary matrices S.
    [Show full text]