Towards Scalable Synchronization on Multi-Cores

Total Page:16

File Type:pdf, Size:1020Kb

Towards Scalable Synchronization on Multi-Cores Towards Scalable Synchronization on Multi-Cores THÈSE NO 7246 (2016) PRÉSENTÉE LE 21 OCTOBRE 2016 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE DE PROGRAMMATION DISTRIBUÉE PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Vasileios TRIGONAKIS acceptée sur proposition du jury: Prof. J. R. Larus, président du jury Prof. R. Guerraoui, directeur de thèse Dr T. Harris, rapporteur Dr G. Muller, rapporteur Prof. W. Zwaenepoel, rapporteur Suisse 2016 “We can only see a short distance ahead, but we can see plenty there that needs to be done.” — Alan Turing To my parents, Eirini and Charalampos Acknowledgements “The whole is greater than the sum of its parts.” — Aristotle To date, my education (i.e., diploma, M.Sc., and Ph.D.) has lasted for 13 years. I could not possibly be here and sustain all the pressure (and of course the financial expenses) without the help and support of my family, Eirini (my mother), Charalampos (my father), and Eleni (my sister). I want to deeply thank them for being there for me throughout these years. In my experience, a successful Ph.D. thesis in the area called “systems” (i.e., with a focus on software systems) requires either 10 years of solo work, or 5–6 years of fruitful collaborations. I was lucky enough to belong in the latter category and to have the chance to collaborate with many amazing people in producing the research that is included in this dissertation. This is actually the main reason why in the main body of this dissertation I use “we” instead of “I.” First and foremost, I would like to thank my advisor, Rachid Guerraoui. Naturally, without him this dissertation would not exist. Rachid is among the most clever and optimistic people I have ever met. To him, I owe three of the most important attributes which I gained during my Ph.D.: (i) being laconic, (ii) optimism, and (iii) my “marketing skills.” The first one can be simply explained by his single-sentence answers to several paragraphs long e-mails. My optimism towards research and my marketing skills can be summarized by my current belief that there are no “bad” research results, but there are definitely bad ways to present those results. In other words, Rachid taught me that if the research work is solid, people will always be interested to read about it. As I mentioned earlier, my work is a result of several fruitful collaborations. I first want to thank Tudor David, with whom we traveled, partied, but also wrote the first two papers of my thesis. Similarly, Javier Picorel has been a close friend throughout the five plus years of my Ph.D. After a couple of years of friendship, we did not resist and decided to collaborate on a very cool project (Chapter 5), where we combined my software with his hardware expertise. On that same project, I also had the chance to collaborate with Babak Falsafi, who I deeply appreciate for his advice on how to present and improve my research results. Additionally, I wish to thank Tim Harris, who offered me the great opportunity to join Oracle Labs for a three-months internship in Cambridge and who also was one of the five members i Acknowledgements of my Ph.D. defense jury. Albeit the short duration of that internship, we were able to finalize the project and, with some additional work here at EPFL, to write a paper (Chapter 7). For that same project, I want to thank my friend and collaborator Georgios Chatzopoulos for his help. Furthermore, I must thank the three other committee members for my private Ph.D. defense, namely Gilles Muller, Willy Zwaenepoel, and James Larus. Our discussions during the defense, as well as their written comments, helped me improve the quality of my dissertation. Naturally, as a Ph.D. student my main/only interest was to solve problems. Still, I had zero interest in solving problems unrelated to research, such as traveling expenses and other bureaucratic stuff, or installing and configuring processors and software. Luckily, I did not really have to handle any of these distractions due to the help of the two secretaries of our lab, Kristine Verhamme and France Faille, and our system administrator Fabien Salvi. Similarly, I want to thank Peva Blanchard for translating my thesis’ abstract to French. Of course, many more people contributed in a way or another to this Ph.D. I would like to thank my colleagues and my friends (many people belong to both groups) for making my everyday life simpler and happier. Without David, Javier, Iraklis, Nadia, Christina, Iris, Matt, George, Tudor, Adi, Matej, Karolos, ... my life during these five years would have been unbearable. In particular, with Iraklis Psaroudakis, Javier Picorel, and David Kozhaya we started the Ph.D. in the same year. I am lucky and grateful to have them as my friends, as they are the people with whom I “cried” about the difficulties of the Ph.D., I celebrated happy moments, etc. Similarly, my “non-Lausannois” friends were always there for me, to listen to my problems over Skype and to spend awesome vacations together. Last but not least, I want to give special thanks to my girlfriend Bojana Paunovic, who arrived in my life almost a year ago and made this past complicated year of my life significantly more pleasant. Lausanne, EPFL, 29 September 2016 Vasileios Trigonakis ii Preface This dissertation presents part of the Ph.D. work performed under the supervision of Prof. Rachid Guerraoui at EPFL in Switzerland. The main results of this thesis appeared originally in the following conference publications (author names are in alphabetical order). 1. Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Everything you always wanted to know about synchronization but were afraid to ask.” Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP). ACM, 2013. (Chapter 4) 2. Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Asynchronized concurrency: The secret to scaling concurrent search data structures.” Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM, 2015. (Chapter 6) 3. Rachid Guerraoui, and Vasileios Trigonakis. “Optimistic concurrency with OPTIK.” Pro- ceedings of the Twenty-First ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP). ACM, 2016. (Chapter 6) 4. Babak Falsafi, Rachid Guerraoui, Javier Picorel and Vasileios Trigonakis. “Unlocking energy.” Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC). USENIX, 2016. (Chapter 5) 5. George Chatzopoulos, Rachid Guerraoui, Tim Harris, and Vasileios Trigonakis. “Ab- stracting multi-core topologies with MCTOP.” Under submission. (Chapter 7) Besides the above-mentioned publications that constitute the backbone of this thesis, I further worked on the following conference publications (author names are in alphabetical order): 1. Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. “TM2C: A software trans- actional memory for many-cores.” Proceedings of the Seventh European Conference on Computer Systems (EuroSys). ACM, 2012. 2. Jelena Antic, Georgios Chatzopoulos, Rachid Guerraoui, and Vasileios Trigonakis. “Lock- ing made easy.” Proceedings of the Seventeenth Annual Middleware Conference (Middleware). ACM, 2016. iii Abstract The shift of commodity hardware from single- to multi-core processors in the early 2000s com- pelled software developers to take advantage of the available parallelism of multi-cores. Unfor- tunately, only few—so-called embarrassingly parallel—applications can leverage this available parallelism in a straightforward manner. The remaining—non-embarrassingly parallel— applications require that their processes coordinate their possibly interleaved executions to ensure overall correctness—they require synchronization. Synchronization is achieved by constraining or even prohibiting parallel execution. Thus, per Amdahl’s law, synchronization limits software scalability. In this dissertation, we explore how to minimize the effects of synchronization on software scalability. We show that scalability of synchronization is mainly a property of the underlying hardware. This means that synchronization directly hampers the cross-platform performance portability of concurrent software. Nevertheless, we can achieve portability without sacrificing performance, by creating design patterns and abstractions, which implicitly leverage hardware details without exposing them to software developers. We first perform an exhaustive analysis of the performance behavior of synchronization on several modern platforms. This analysis clearly shows that the performance and scalability of synchronization are highly dependent on the characteristics of the underlying platform. We then focus on lock-based synchronization and analyze the energy/performance trade- offs of various waiting techniques. We show that the performance and the energy efficiency of locks go hand in hand on modern x86 multi-cores. This correlation is again due to the characteristics of the hardware that does not provide practical tools for reducing the power consumption of locks without sacrificing throughput. We then propose two approaches for developing portable and scalable concurrent software, hence hiding the limitations that the underlying multi-cores impose. First, we introduce OPTIK, a new practical design pattern for designing and implementing fast and scalable concurrent data structures. We illustrate the power of our OPTIK pattern by devising
Recommended publications
  • Is Parallel Programming Hard, And, If So, What Can You Do About It?
    Is Parallel Programming Hard, And, If So, What Can You Do About It? Edited by: Paul E. McKenney Linux Technology Center IBM Beaverton [email protected] December 16, 2011 ii Legal Statement This work represents the views of the authors and does not necessarily represent the view of their employers. IBM, zSeries, and Power PC are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. Linux is a registered trademark of Linus Torvalds. i386 is a trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both. Other company, product, and service names may be trademarks or service marks of such companies. The non-source-code text and images in this doc- ument are provided under the terms of the Creative Commons Attribution-Share Alike 3.0 United States li- cense (http://creativecommons.org/licenses/ by-sa/3.0/us/). In brief, you may use the contents of this document for any purpose, personal, commercial, or otherwise, so long as attribution to the authors is maintained. Likewise, the document may be modified, and derivative works and translations made available, so long as such modifications and derivations are offered to the public on equal terms as the non-source-code text and images in the original document. Source code is covered by various versions of the GPL (http://www.gnu.org/licenses/gpl-2.0.html). Some of this code is GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later.
    [Show full text]
  • 11. Kernel Design 11
    11. Kernel Design 11. Kernel Design Interrupts and Exceptions Low-Level Synchronization Low-Level Input/Output Devices and Driver Model File Systems and Persistent Storage Memory Management Process Management and Scheduling Operating System Trends Alternative Operating System Designs 269 / 352 11. Kernel Design Bottom-Up Exploration of Kernel Internals Hardware Support and Interface Asynchronous events, switching to kernel mode I/O, synchronization, low-level driver model Operating System Abstractions File systems, memory management Processes and threads Specific Features and Design Choices Linux 2.6 kernel Other UNIXes (Solaris, MacOS), Windows XP and real-time systems 270 / 352 11. Kernel Design – Interrupts and Exceptions 11. Kernel Design Interrupts and Exceptions Low-Level Synchronization Low-Level Input/Output Devices and Driver Model File Systems and Persistent Storage Memory Management Process Management and Scheduling Operating System Trends Alternative Operating System Designs 271 / 352 11. Kernel Design – Interrupts and Exceptions Hardware Support: Interrupts Typical case: electrical signal asserted by external device I Filtered or issued by the chipset I Lowest level hardware synchronization mechanism Multiple priority levels: Interrupt ReQuests (IRQ) I Non-Maskable Interrupts (NMI) Processor switches to kernel mode and calls specific interrupt service routine (or interrupt handler) Multiple drivers may share a single IRQ line IRQ handler must identify the source of the interrupt to call the proper → service routine 272 / 352 11. Kernel Design – Interrupts and Exceptions Hardware Support: Exceptions Typical case: unexpected program behavior I Filtered or issued by the chipset I Lowest level of OS/application interaction Processor switches to kernel mode and calls specific exception service routine (or exception handler) Mechanism to implement system calls 273 / 352 11.
    [Show full text]
  • Understanding the Linux Kernel, 3Rd Edition by Daniel P
    1 Understanding the Linux Kernel, 3rd Edition By Daniel P. Bovet, Marco Cesati ............................................... Publisher: O'Reilly Pub Date: November 2005 ISBN: 0-596-00565-2 Pages: 942 Table of Contents | Index In order to thoroughly understand what makes Linux tick and why it works so well on a wide variety of systems, you need to delve deep into the heart of the kernel. The kernel handles all interactions between the CPU and the external world, and determines which programs will share processor time, in what order. It manages limited memory so well that hundreds of processes can share the system efficiently, and expertly organizes data transfers so that the CPU isn't kept waiting any longer than necessary for the relatively slow disks. The third edition of Understanding the Linux Kernel takes you on a guided tour of the most significant data structures, algorithms, and programming tricks used in the kernel. Probing beyond superficial features, the authors offer valuable insights to people who want to know how things really work inside their machine. Important Intel-specific features are discussed. Relevant segments of code are dissected line by line. But the book covers more than just the functioning of the code; it explains the theoretical underpinnings of why Linux does things the way it does. This edition of the book covers Version 2.6, which has seen significant changes to nearly every kernel subsystem, particularly in the areas of memory management and block devices. The book focuses on the following topics: • Memory management, including file buffering, process swapping, and Direct memory Access (DMA) • The Virtual Filesystem layer and the Second and Third Extended Filesystems • Process creation and scheduling • Signals, interrupts, and the essential interfaces to device drivers • Timing • Synchronization within the kernel • Interprocess Communication (IPC) • Program execution Understanding the Linux Kernel will acquaint you with all the inner workings of Linux, but it's more than just an academic exercise.
    [Show full text]
  • Linux Kernel Synchronization
    10/27/12 Logical Diagram Binary Memory Threads Formats Allocators Linux kernel Today’s Lecture User SynchronizationSystem Calls Kernel synchronization in the kernel RCU File System Networking Sync Don Porter CSE 506 Memory Device CPU Management Drivers Scheduler Hardware Interrupts Disk Net Consistency Why Linux Warm-up synchronization? ò What is synchronization? ò A modern OS kernel is one of the most complicated parallel programs you can study ò Code on multiple CPUs coordinate their operations ò Examples: ò Other than perhaps a database ò Includes most common synchronization patterns ò Locking provides mutual exclusion while changing a pointer-based data structure ò And a few interesting, uncommon ones ò Threads might wait at a barrier for completion of a phase of computation ò Coordinating which CPU handles an interrupt The old days: They didn’t Historical perspective worry! ò Why did OSes have to worry so much about ò Early/simple OSes (like JOS, pre-lab4): No need for synchronization back when most computers have only synchronization one CPU? ò All kernel requests wait until completion – even disk requests ò Heavily restrict when interrupts can be delivered (all traps use an interrupt gate) ò No possibility for two CPUs to touch same data 1 10/27/12 Slightly more recently A slippery slope ò Optimize kernel performance by blocking inside the kernel ò We can enable interrupts during system calls ò Example: Rather than wait on expensive disk I/O, block and ò More complexity, lower latency schedule another process until it completes ò We can block in more places that make sense ò Cost: A bit of implementation complexity ò Better CPU usage, more complexity ò Need a lock to protect against concurrent update to pages/ inodes/etc.
    [Show full text]
  • Synchronizations in Linux
    W4118 Operating Systems Instructor: Junfeng Yang Learning goals of this lecture Different flavors of synchronization primitives and when to use them, in the context of Linux kernel How synchronization primitives are implemented for real “Portable” tricks: useful in other context as well (when you write a high performance server) Optimize for common case 2 Synchronization is complex and subtle Already learned this from the code examples we’ve seen Kernel synchronization is even more complex and subtle Higher requirements: performance, protection … Code heavily optimized, “fast path” often in assembly, fit within one cache line 3 Recall: Layered approach to synchronization Hardware provides simple low-level atomic operations , upon which we can build high-level, synchronization primitives , upon which we can implement critical sections and build correct multi-threaded/multi-process programs Properly synchronized application High-level synchronization primitives Hardware-provided low-level atomic operations 4 Outline Low-level synchronization primitives in Linux Memory barrier Atomic operations Synchronize with interrupts Spin locks High-level synchronization primitives in Linux Completion Semaphore Futex Mutex 5 Architectural dependency Implementation of synchronization primitives: highly architecture dependent Hardware provides atomic operations Most hardware platforms provide test-and-set or similar: examine and modify a memory location atomically Some don’t, but would inform if operation attempted was atomic 6 Memory
    [Show full text]
  • Is Parallel Programming Hard, And, If So, What Can You Do About It?
    Is Parallel Programming Hard, And, If So, What Can You Do About It? Edited by: Paul E. McKenney Linux Technology Center IBM Beaverton [email protected] January 2, 2017 ii Legal Statement This work represents the views of the editor and the authors and does not necessarily represent the view of their respective employers. Trademarks: • IBM, zSeries, and PowerPC are trademarks or registered trademarks of Interna- tional Business Machines Corporation in the United States, other countries, or both. • Linux is a registered trademark of Linus Torvalds. • i386 is a trademark of Intel Corporation or its subsidiaries in the United States, other countries, or both. • Other company, product, and service names may be trademarks or service marks of such companies. The non-source-code text and images in this document are provided under the terms of the Creative Commons Attribution-Share Alike 3.0 United States license.1 In brief, you may use the contents of this document for any purpose, personal, commercial, or otherwise, so long as attribution to the authors is maintained. Likewise, the document may be modified, and derivative works and translations made available, so long as such modifications and derivations are offered to the public on equal terms as the non-source-code text and images in the original document. Source code is covered by various versions of the GPL.2 Some of this code is GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later. See the comment headers of the individual source files within the CodeSamples directory in the git archive3 for the exact licenses.
    [Show full text]
  • Université De Montréal Low-Impact Operating
    UNIVERSITE´ DE MONTREAL´ LOW-IMPACT OPERATING SYSTEM TRACING MATHIEU DESNOYERS DEPARTEMENT´ DE GENIE´ INFORMATIQUE ET GENIE´ LOGICIEL ECOLE´ POLYTECHNIQUE DE MONTREAL´ THESE` PRESENT´ EE´ EN VUE DE L’OBTENTION DU DIPLOMEˆ DE PHILOSOPHIÆ DOCTOR (Ph.D.) (GENIE´ INFORMATIQUE) DECEMBRE´ 2009 c Mathieu Desnoyers, 2009. UNIVERSITE´ DE MONTREAL´ ECOL´ E POLYTECHNIQUE DE MONTREAL´ Cette th`ese intitul´ee : LOW-IMPACT OPERATING SYSTEM TRACING pr´esent´ee par : DESNOYERS Mathieu en vue de l’obtention du diplˆome de : Philosophiæ Doctor a ´et´edˆument accept´ee par le jury constitu´ede : Mme. BOUCHENEB Hanifa, Doctorat, pr´esidente M. DAGENAIS Michel, Ph.D., membre et directeur de recherche M. BOYER Fran¸cois-Raymond, Ph.D., membre M. STUMM Michael, Ph.D., membre iii I dedicate this thesis to my family, to my friends, who help me keeping balance between the joy of sharing my work, my quest for knowledge and life. Je d´edie cette th`ese `ama famille, `ames amis, qui m’aident `aconserver l’´equilibre entre la joie de partager mon travail, ma quˆete de connaissance et la vie. iv Acknowledgements I would like to thank Michel Dagenais, my advisor, for believing in my poten- tial and letting me explore the field of operating systems since the beginning of my undergraduate studies. I would also like to thank my mentors, Robert Wisniewski from IBM Research and Martin Bligh, from Google, who have been guiding me through the internships I have done in the industry. I keep a good memory of these experiences and am honored to have worked with them. A special thanks to Paul E.
    [Show full text]
  • What Is RCU, Fundamentally?
    Portland State University PDXScholar Computer Science Faculty Publications and Presentations Computer Science 12-2007 What is RCU, Fundamentally? Paul E. McKenney IBM Linux Technology Center Jonathan Walpole Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac Part of the Computer and Systems Architecture Commons, and the OS and Networks Commons Let us know how access to this document benefits ou.y Citation Details "What is RCU, Fundamentally?" Paul McKenney and Jonathan Walpole, LWN.net (http://lwn.net/Articles/ 262464/), December 17, 2007. This Article is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. What is RCU, Fundamentally? [LWN.net] Weekly edition Kernel Security Distributions Contact Us Search Archives Calendar Subscribe Write for LWN LWN.net FAQ Sponsors What is RCU, Fundamentally? [Editor's note: this is the first in a three-part series on how the read-copy-update mechanism works. Many thanks to Paul McKenney and Jonathan Walpole for allowing December 17, 2007 us to publish these articles. The remaining two sections will appear in future weeks.] This article was contributed by Paul McKenney Part 1 of 3 of What is RCU, Really? Paul E. McKenney, IBM Linux Technology Center Jonathan Walpole, Portland State University Department of Computer Science Introduction Read-copy update (RCU) is a synchronization mechanism that was added to the Linux kernel in October of 2002. RCU achieves scalability improvements by allowing reads to occur concurrently with updates.
    [Show full text]
  • Locking in Linux Kernel
    Locking in Linux kernel Galois @ USTC Linux Users Group [email protected] Slides are powered by OpenOffice.org+Linux+GNU+X31-150$ Copyright © 2005 Galois Y.F. Zheng Permissions is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be downloaded from GNU's home: http://www.gnu.org/licenses/fdl.txt Locking in Linux kernel • OS review: Kernel Control Paths • Locking in Linux • Locking and Coding • Conclusions OS review: Kernel Control Paths cpu, operating system, and human • CPU is stupid, running endlessly! • But the codes in RAM is intelligent. (They compete for CPU resources.) • We people control the codes. endless rotating elevator: CPU 2 2nd floor 2 3 1 “CPU” running endlessly 3 1 entrance 4 4 1st floor Human exit ... X : Codes 1 1 2 3 4 : Kernel Control Path 1 X : Codes 2 1 2 ... 3 4 : Kernel Control Path 2 OS review: Kernel Control Paths Pre-KCP: What is Kernel Control Path ? • Interrupt handlers • Exception handlers • User-space threads in kernel(system calls) • Kernel threads(idle, work queue, pdflush…) • Bottom halves(soft irq, tasklet,BH...) Post-KCP: Is mm subsystem a KCP? NO, But mm codes are called by KCP. OS review: Kernel Control Paths What is the composition of a kernel? • Kernel Control Paths(KCP). • Kernel Data (global or local). • Kernel Codes called by the KCPs.
    [Show full text]
  • Is Parallel Programming Hard, And, If So, What Can You Do About It?
    Is Parallel Programming Hard, And, If So, What Can You Do About It? Edited by: Paul E. McKenney Linux Technology Center IBM Beaverton [email protected] August 8, 2012 ii Legal Statement This work represents the views of the authors and does not necessarily represent the view of their employers. IBM, zSeries, and PowerPC are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. Linux is a registered trademark of Linus Torvalds. i386 is a trademark of Intel Corporation or its subsidiaries in the United States, other countries, or both. Other company, product, and service names may be trademarks or service marks of such compa- nies. The non-source-code text and images in this document are provided under the terms of the Cre- ative Commons Attribution-Share Alike 3.0 United States license (http://creativecommons. org/licenses/by-sa/3.0/us/). In brief, you may use the contents of this document for any purpose, personal, commercial, or otherwise, so long as attribution to the authors is maintained. Likewise, the document may be modified, and derivative works and translations made available, so long as such modifications and derivations are offered to the public on equal terms as the non-source-code text and images in the original document. Source code is covered by various versions of the GPL (http://www.gnu.org/licenses/ gpl-2.0.html). Some of this code is GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later. See the CodeSamples directory in the git archive (git://git.
    [Show full text]
  • Development of a Linux Driver for a MOST Interface and Porting to RTAI
    FACHHOCHSCHULE LANDSHUT FACHBEREICH INFORMATIK Development of a Linux Driver for a MOST Interface and Porting to RTAI Diplomarbeit Vorgelegt von: Bernhard Walle aus Neufahrn i. NB Eingereicht am: 15. September 2006 Betreuer FH: Prof. Dr. rer. nat. Peter Hartlmüller Betreuer Siemens: Gernot Hillier, Siemens AG, CT SE 2 Erklärung zur Diplomarbeit (gemäß § 31, Abs. 7 RaPO) Name, Vorname des Studierenden: Bernhard Walle Fachhochschule Landshut Fachbereich Informatik Hiermit erkläre ich, dass ich die Arbeit selbständig verfasst, noch nicht an- derweitig für Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen oder Hilfsmittel benützt sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet habe. 15. 09. 2006 Datum Unterschrift des Studierenden Contents 1 Introduction 19 1.1 About the Topic of this Thesis .............................. 19 1.2 Overview ......................................... 20 1.3 Conventions ....................................... 20 1.3.1 Terms ....................................... 20 1.3.2 Units ....................................... 21 1.3.3 Typographical Conventions ........................... 21 1.4 Source Code ....................................... 21 1.4.1 Listings ...................................... 21 1.4.2 Original Software Code ............................. 22 1.4.3 MOST Driver and Utilities ........................... 22 2 Basics 23 2.1 Linux Device drivers ................................... 23 2.1.1 Kernel Modules ................................. 23 2.1.2 Device Files and System
    [Show full text]
  • Can Seqlocks Get Along with Programming Language Memory Models?
    Can Seqlocks Get Along With Programming Language Memory Models? Hans-J. Boehm HP Laboratories HPL-2012-68 Keyword(s): Memory models; seqlocks; reader-writer locks; memory fences Abstract: Seqlocks are an important synchronization mechanism and represent a significant improvement over conventional reader-writer locks in some contexts. They avoid the need to update a synchronization variable during a reader critical section, and hence improve performance by avoiding cache coherence misses on the lock object itself. Unfortunately, they rely on speculative racing loads inside the critical section. This makes them an interesting problem case for programming-language-level memory models that emphasize data-race-free programming. We analyze a variety of implementation alternatives within the C++11 memory model, and briefly address the corresponding issue in Java. In the process, we observe that there may be a use for "read-dont-modify-write" operations, i.e. read-modify-write operations that atomically write back the original value, without modifying it, solely for the memory model consequences, and that it may be useful for compilers to optimize such operations. External Posting Date: June 6, 2012 [Fulltext] Approved for External Publication Internal Posting Date: June 6, 2012 [Fulltext] To Be published in MSPC 2012: ACM SIGPLAN Workshop on Memory Systems Performance and Correctness Copyright MSPC 2012: ACM SIGPLAN Workshop on Memory Systems Performance and Correctness Can Seqlocks Get Along with Programming Language Memory Models? Hans-J. Boehm HP Laboratories [email protected] Abstract rently by multiple threads, there are several alternatives to Seqlocks are an important synchronization mechanism and protecting them: represent a significant improvement over conventional reader- mutexes or traditional reader-writer locks These do not writer locks in some contexts.
    [Show full text]